Abstract:
Provided is a compound including an activated metal and a ligand, a carbon dioxide (CO2) absorbent including the compound, a method of preparing the CO2 absorbent, and a method of removing CO2.
Abstract:
The present invention relates to a method for continuous removal of carbon dioxide, the method comprising the steps of: a) preparing an aqueous solution containing an amine-based compound and an acidic calcium compound; b) bringing a gas containing carbon dioxide to be treated into contact with the aqueous solution to prepare a calcium carbonate precipitate; and c) recovering the calcium carbonate and then adding a basic calcium compound to the residual aqueous solution, wherein after step c), step b) and step c) are repeatedly performed. The removal of carbon dioxide by the method of the present invention has advantages of requiring low energy and being capable of mineralizing and removing carbon dioxide at a fast rate without a separate time for induction.
Abstract:
Disclosed are a compound including an oxalate, a carbon dioxide absorbent including the same, a method of preparing the carbon dioxide absorbent and a method of removing carbon dioxide, which may overcome issues of high recycling energy and low absorptivity of a conventional carbon dioxide absorbent to considerably reduce recycling energy and absorb a greater amount of carbon dioxide per unit absorbent, so that a size of a carbon dioxide absorption tower may be reduced and a less amount of recycling energy may be used, contributing to a substantial decrease in device manufacture costs and management costs.
Abstract:
The present invention relates to an apparatus and method of preparing carbonate and/or formate from carbon dioxide. The apparatus of preparing carbonate and/or formate from carbon dioxide (CO2), comprising: an electrolysis reactor comprising (i) an anode which contains an aqueous solution of a Group I metal salt as an electrolytic solution, (ii) an ion-exchange membrane through which metal cations derived from the Group I metal salt and water flow from an anode to a cathode, (iii) a cathode, and (iv) a gas diffusion layer which supplies a carbon dioxide-containing gas to the cathode; a power supply unit of applying a voltage between the anode and the cathode; a first gas-liquid separator of recovering the electrolytic solution from the products formed in the anode; a second gas-liquid separator of recovering carbonate and/or formate from the products formed in the cathode; a pH meter of measuring the pH of the electrolytic solution recovered from the first gas-liquid separator; a first reactant supply unit of supplying (a) the electrolytic solution recovered from the first gas-liquid separator and (b) the aqueous solution of the Group I metal salt with which the recovered electrolytic solution is replenished according to the pH of the electrolytic solution, to the anode; and a second reactant supply unit of supplying carbon dioxide or a mixer comprising carbon dioxide and water vapor to the cathode; wherein, when a voltage is applied between the anode and the cathode, in the anode, water undergoes electrolysis to generate hydrogen ions, oxygen, and electrons, and metal cations in the Group I metal salt are substituted with the hydrogen ions, while the generated metal cations move to the cathode through the ion-exchange membrane and the electrons move to the cathode through an external electric line; and in the cathode, carbon dioxide, water, metal cations, and electrons are reacted and produce carbonate and/or formate.
Abstract:
The present invention relates to a method and an apparatus of preparing a reduction product of carbon dioxide by electrochemically reducing carbon dioxide.The present invention can prepare, in an energy-efficient manner, a reduction product of high-concentration carbon dioxide with high Faraday efficiency as in a liquid reduction reaction by producing the reduction product of carbon dioxide by supplying water or an electrolytic solution to an anode region; supplying humidified carbon dioxide gas having a second temperature higher than a first temperature to a cathode region within an electrochemical cell having the first temperature so as to supply the carbon dioxide gas which has been humidified to be in a condition where the relative humidity is greater than 100%, while applying a voltage between the anode region and the cathode region so as to generate hydrogen ions (H+) in the anode region; and transporting the hydrogen ions to the cathode region through the electrolyte membrane, thereby electrochemically reducing the carbon dioxide gas.