Abstract:
A carbon dioxide capturing apparatus and process uses a self-generating power means that uses carbon dioxide in combustion exhaust gas through the convergence of a carbon dioxide absorption tower. The capturing apparatus and process also relies on ionic generator associated technology using a concentration difference between seawater and freshwater. The capturing apparatus and process result in increased production efficiency for electric energy and reduced costs for a carbon dioxide capturing process by increasing a concentration difference using an absorbent liquid for absorbing carbon dioxide and, at the same time, electricity is obtained through carbon dioxide which is a greenhouse gas.
Abstract:
Disclosed is an adsorbent containing a metal oxide for adsorption of hydrogen sulfide in biogas, and a biogas purification system using the same.
Abstract:
Disclosed is an adsorbent containing a metal oxide for adsorption of hydrogen sulfide in biogas, and a biogas purification system using the same.
Abstract:
Disclosed are a compound including an oxalate, a carbon dioxide absorbent including the same, a method of preparing the carbon dioxide absorbent and a method of removing carbon dioxide, which may overcome issues of high recycling energy and low absorptivity of a conventional carbon dioxide absorbent to considerably reduce recycling energy and absorb a greater amount of carbon dioxide per unit absorbent, so that a size of a carbon dioxide absorption tower may be reduced and a less amount of recycling energy may be used, contributing to a substantial decrease in device manufacture costs and management costs.
Abstract:
A method for regenerating an amine-based, acid gas absorbent using a mixed catalyst containing silver oxide and silver carbonate includes the steps of absorbing an acid gas into an acid gas absorbent having an amine group to obtain an acid gas-absorbed absorbent; and regenerating the amine-based, acid gas absorbent by adding a catalyst mixture containing silver oxide and silver carbonate to the acid gas-absorbed absorbent and by removing the acid gas at a temperature ranging from 40° C. to 86° C. When the amine-based acid gas absorbent is an acid gas absorbent solution and when the acid gas that is absorbed into the acid gas absorbent solution is carbon dioxide, the catalyst mixture efficiently promotes decomposition of carbon dioxide-bound carbamate in the acid gas absorbent solution that absorbs the carbon dioxide through a novel catalytic reaction pathway.
Abstract:
An apparatus and process are provided for electricity production and high-efficiency trapping of carbon dioxide, using carbon dioxide within combustion exhaust gas and converging technologies associated with a carbon dioxide absorption tower and a generating device using ions which uses a difference in concentration of salinity between seawater and freshwater. It is expected that enhanced electrical energy production efficiency, an effect of reducing costs for the operation of a carbon dioxide trapping process, and electricity production from carbon dioxide, which is a greenhouse gas, can be simultaneously achieved by increasing the difference in concentration using an absorbent for absorbing carbon dioxide.
Abstract:
Provided is a compound including an activated metal and a ligand, a carbon dioxide (CO2) absorbent including the compound, a method of preparing the CO2 absorbent, and a method of removing CO2.