Method for preparing fermentable sugar from wood-based biomass

    公开(公告)号:US10597688B2

    公开(公告)日:2020-03-24

    申请号:US14655158

    申请日:2013-12-26

    Abstract: The present invention relates to a method for preparing, from wood-based biomass, a high concentration of fermentable sugar which can be effectively used in culturing various industrial fermented bacteria. According to the method of the present invention, biomass can be extracted by hot water prior to a pre-treatment so as to remove extractible substances such as mineral salts to thus minimize the content of impurities in raw materials for an enzymatic saccharification. The biomass from which substances extractible by hot water are removed is pre-treated in the condition where xylan yield rate is maximized, thus achieving maximum inhibition of the generation of over-decomposed products of sugar. Subsequently, fermentable sugar for culturing various industrial fermented bacteria can be prepared in an inexpensive manner by only concentrating, using a separator membrane, the sugar solution obtained by an enzymatic saccharification of the pre-treated solid content obtained by a solid-liquid separation without washing the solid content with water.

    Method for preparing stereoblock polylactide

    公开(公告)号:US09914801B2

    公开(公告)日:2018-03-13

    申请号:US15534274

    申请日:2015-12-01

    Abstract: The present invention relates to a method for preparing a stereoblock polylactide, comprising: a step of obtaining a first reaction mixture with a monomer conversion rate of 80 to 95% by adding a catalyst to a D-lactide and growing a PDLA chain; a step of obtaining a second reaction mixture with a monomer conversion rate of 80 to 95% by adding an L-lactide to the first reaction mixture and growing a racemic PDLLA chain at the end of the PDLA chain; and a step of further adding an L-lactide to the second reaction mixture and growing a PLLA chain at the end of the PDLLA chain through a polymerization reaction. The preparation method is capable of providing a more convenient synthesis by skipping a process of removing residual monomers in the middle of the reaction, and also of preventing multi-blocking and oligomerization of polymer chains due to a mixture of chains by gradually adding polymerizable monomers while controlling the monomer conversion rate in a one-port synthesis, thereby reducing chain transfer during the polymerization.

Patent Agency Ranking