Abstract:
The present invention relates to a nanoparticle heterodimer in which Raman-active molecules are located at a binding portion of the nanoparticle heterodimer, and more particularly, to a core-shell nanoparticle heterodimer comprising: a gold or silver core having a surface to which oligonucleotides are bonded; and a gold or silver shell covering the core. In addition, the present invention relates to the core-shell nanoparticle dimer, to a method for preparing same, and to the use thereof.
Abstract:
The present invention relates to a diagnostic kit for sepsis, comprising: a first core gold nanoparticle having a target capture oligonucleotide coupled thereto, the target capture oligonucleotide binding complementarily to a portion of a sepsis pathogen-specific genome; and a second core gold nanoparticle to which a target capture oligonucleotide having a Raman-active molecule coupled to one end thereof is coupled via the other end thereof, the target capture oligonucleotide including a sequence complementary to a portion of the sepsis pathogen-specific genome which does not overlap with, but is successive to the portion for the first gold nanoparticle, and a method for diagnosis of sepsis, using the same.
Abstract:
Provided are a hydrophilic particle, a method for manufacturing the same, and a contrasting agent using the same. More specifically, the hydrophilic particle according to the inventive concept may include a hydrophobic particle, and an amphiphilic organic dye directly absorbed on a surface of the hydrophobic particle. In this case, the hydrophobic particle includes a center particle, and a hydrophobic ligand covering a surface of the center particle, and the amphiphilic organic dye may be combined to the hydrophobic ligand by a hydrophobic interaction. The hydrophilic particle may have a surface zeta potential lower than a surface zeta potential of the amphiphilic organic dye.
Abstract:
Provided is a monochromatization device for easily selecting light having a specific wavelength, comprising: a first broadband filter arranged to have a first rotational angle with respect to an incident direction of light to enable a first wavelength band to pass therethrough with respect to the incident light; a second broadband filter arranged to have a second rotational angle with respect to an incident direction of light to enable a second wavelength band to pass therethrough with respect to the light passing through the first broadband filter; and a path compensation unit for adjusting a light path so that the light path passing through the second broadband filter is the same as a path of the light incident to the first broadband filter. Accordingly, the output light efficiency for the incident light is increased and the required specific wavelength can be more easily selected.