Abstract:
The work vehicle includes a vehicle body provided with a travel device; a prime mover provided in the vehicle body; a transmission device capable of speed-changing a driving force from the prime mover and transmitting the driving force to the travel device; a transmission case housing the transmission device and being filled with lubricating oil; and a controller capable of switching between a warm-up operation mode in which a gear of the transmission device is rotated in a state in which transmission of power from the transmission device to the travel device is blocked and a travel operation mode in which the gear is rotated in a state in which the power is transmitted from the transmission device to the travel device.
Abstract:
A work vehicle includes an engine, a transmission to change a received rotational force to a rotational force at a gear ratio that corresponds to a desired vehicle speed and output the changed rotational force, a first operating tool to change the rotation speed of the engine and a deceleration rate of the transmission, a rotation speed controller to control the rotation speed of the engine based on an input provided to the first operating tool, and a second operating tool to receive a holding instruction to hold the rotation speed of the engine constant. In response to the holding instruction being inputted to the second operating tool, the rotation speed controller is configured or programmed to disable control of the rotation speed of the engine which control is based on the input provided to the first operating tool, and hold the rotation speed of the engine constant in accordance with the holding instruction.
Abstract:
A PTO shaft driving device in a working machine, includes a parking switch to detect parking of a vehicle body, a first switch located on a manipulator located on the vehicle body to output a PTO shaft control command that is either a driving command to drive a PTO shaft located on the vehicle body or a stopping command to stop the PTO shaft, a second switch located at a position different from the manipulator to output a PTO shaft control command that is either a driving command to drive the PTO shaft or a stopping command to stop the PTO shaft, a first permission switch to selectively permit or prohibit a stationary work when the parking switch detects the parking, and a controller configured or programmed to control driving of the PTO shaft. The controller is configured or programmed to selectively drive or stop the PTO shaft according to the PTO shaft control command from the first switch or the second switch when the stationary work is permitted by the first permission switch.
Abstract:
A driving support information display device includes a status display area controller, a menu display area controller, and a status information controller. The status display area controller manages a status display area having a plurality of status display sections arranged vertically in one side area of a display screen. The menu display area controller manages an upper menu display area having a plurality of selection button sections arranged side by side in an upper area of the display screen and a lower menu display area having a plurality of selection button sections arranged side by side in a lower area of the display screen. The status information controller displays status information in the status display section by providing to the status display area controller status information relating to a functional module assigned to the selection button section that has been touch input.
Abstract:
A traveling work vehicle includes a gear-shifting control unit that outputs a gear-shifting control command to a main gear-shifting apparatus for shifting gears without cutting off power transmission, a sub gear-shifting apparatus for shifting gears by cutting off power transmission, and a first operation unit and a second operation unit that provide gear-shifting, upshifting or downshifting, operation commands to the gear-shifting control unit. The gear-shifting control unit has a first travel control section that generates a gear-shifting control command for shifting gears in the main gear-shifting apparatus in response to the gear-shifting operation command from the first operation unit in a work traveling mode, and a second travel control section that generates a gear-shifting control command for shifting gears in the sub gear-shifting apparatus in response to the gear-shifting operation command from the second operation unit in the work traveling mode.
Abstract:
A driving support system includes a device control unit that outputs operation control signals to a travel operation device causing a traveling vehicle body to travel and a work operation device causing a ground work apparatus to operate. A recorder records control data in execution processing order as a work/travel sequence. A reproducer reads out the control data recorded by the recorder and transmits the control data to the device control unit. A screen processor converts the control data for each execution processing unit to an icon and displays in a display a work/travel sequence screen displaying the icon in the execution processing order. The system manages a plurality of the work/travel sequences on the same work/travel sequence screen.
Abstract:
A work vehicle includes a hydrostatic continuously variable transmission to output power, an electric motor to perform shifting, a linkage mechanism to link a shifting shaft of the electric motor with a trunnion shaft of the hydrostatic continuously variable transmission the linkage mechanism, including a first linkage section linked with the shifting shaft, and a second linkage section linked with the trunnion shaft, and a biasing mechanism to press and bias a second gear of the second linkage section that meshes with a first gear of the first linkage section against the first gear such that a tooth flank of the second gear abuts with a tooth flank of the first gear in a rotation direction reverse to a rotation direction of the first gear.
Abstract:
A work vehicle includes a battery, an operating apparatus to be supplied with power from the battery, an operating apparatus manager to manage operation of the operating apparatus, a reporting device in a driver's section, a voltage drop amount detector to detect an amount of voltage drop in the battery, and a voltage drop manager to report voltage drop information via the reporting device in response to the amount of voltage drop exceeding a permissible value during operation of the operating apparatus.
Abstract:
A work vehicle includes a diesel engine, a heater to heat a gas to be supplied to a combustion chamber of the diesel engine, and a controller to execute an afterglow routine to cause the heater to operate. The controller is configured or programmed to execute the afterglow routine in response to the diesel engine being started, an elapse of a predetermined stop time since an end of a previous execution of the afterglow routine, and the work vehicle being in a warming-up state.
Abstract:
A working vehicle includes: a vehicle body provided with a traveling device; a hydraulic pump including a swashplate configured to change an output of the hydraulic pump according to a swashplate angle; a traveling motor including an output shaft having a rotation speed variable according to the output of the hydraulic pump and capable of transmitting power of the output shaft to the traveling device; an angle detector configured to detect the swashplate angle that is an angle of the swashplate; and a swashplate control unit configured to control the swashplate angle on the basis of control information relating to control of the swashplate angle and an actual swashplate angle that is the swashplate angle detected by the angle detector.