Abstract:
By applying a laser beam that is absorbed into a quartz crystal to an upper right end of a crystal chip, the height of the crystal chip is altered step by step to form a first step, a second step, a third step, and a fourth step, respectively. As such, control of the shape of a quartz crystal resonator is easy even if the quartz crystal resonator is miniaturized, the shape and the performance of a processed quartz crystal resonator are satisfactory, quartz crystal resonators of various shapes can be formed, a quartz crystal resonator can be formed at low cost with a small number of man-hours, a load in driving a quartz crystal resonator is small, and versatile equipment and tools can be used.
Abstract:
An object of the present invention is to provide a method for repairing light point defects in which light points can be converted to black spots through a simple process without affecting surrounding pixels, and the repaired pixels can be maintained without their returning to light points even with the passage of time.The present invention provides a method for repairing light point defect pixels of a liquid crystal display device having a liquid crystal panel which comprises a pair of substrates, a liquid crystal layer interposed between the pair of substrates, and a pair of alignment films each of which is provided between the substrate and the liquid crystal layer restraining the orientation of the liquid crystals of the liquid crystal layer. The defect repair method includes the step of irradiating laser light onto a region of the alignment film corresponding to the light point defect pixels to locally reduce or eliminate the orientation restraining force of the alignment film, wherein the light point defect pixels are repaired by reducing the intensity of the light transmitted through the region where the orientation restraining force is reduced or eliminated when the liquid crystal is illuminated.
Abstract:
A method of machining a substrate etches a substrate according to a predetermined length and depth from an intersection between a first predetermined dividing line and a second predetermined dividing line, which cross each other in a T-shaped line, along the second predetermined dividing line of the predetermined dividing lines being used to cut the substrate, and divides the substrate along the predetermined dividing lines which are not etched by laser machining.
Abstract:
A laminated core of a motor in which vibrations of core plates causing motor noise is restrained at a low cost; a method of manufacturing such a laminated core; a motor having such a laminated core; and an ink-jet recording apparatus having such a motor. In a laminated core (1) of a motor in which a plurality of core pieces (10) are laminated on each other and which has magnetic poles (13) each having a roughed surface of mountain portions (13a) and groove portions (13b) formed alternately in the direction of rotation of the motor, welded portions (31) for firmly fixing the core pieces (10) to each other are provided in the surface of one of the groove portions (13b) formed in the vicinities of the central portion of each magnetic pole (13) in the direction of rotation. Each welded portion (31) is formed continuously in the direction of lamination of the core pieces (10). Each welded portion (31) is formed by welding the surface of the groove portion (13b). By these welded portions (31), the core pieces (10) are firmly fixed to each other in the surface portions of the magnetic pole portions (13).
Abstract:
A mask, which is used to form predetermined patterns on a substrate, includes a pattern forming member that is provided with openings corresponding to the predetermined patterns; and a pattern holding member that overlaps one surface of the pattern forming member.
Abstract:
Provided is a manufacturing method of a substrate capable of forming a pattern having a relatively narrow width and thick film based on a droplet discharging method. The manufacturing method of a substrate of the present invention is a manufacturing method of a substrate having a patterned functional film, including the steps of: forming a groove pattern on the substrate with laser irradiation; disposing a liquid material along the groove pattern; and heating the liquid material so as to form the functional film. Further, the groove pattern and a liquid repellent film may be combined. By using a liquid material, a highly dense and minute functional film (a wiring pattern for example) can be formed on the substrate.
Abstract:
An optical module comprising: an optical fiber; an optical element having an optical section and with a fixed position relative to the optical fiber; and a semiconductor chip electrically connected to the optical element, and the optical element and semiconductor chip being packaged. A hole is formed in the semiconductor chip, and the optical element is mounted on the semiconductor chip with the optical section facing the hole, and the optical fiber is inserted in the hole and fitted to the semiconductor chip.
Abstract:
A method of manufacturing a semiconductor device includes: a first step of forming a first through hole that penetrates the location of the electrode in a semiconductor element having an electrode; a second step of providing an insulating material in a region including an inside of the first through hole, in such a manner that a second through hole is provided penetrating through the insulating material; and a third step of providing a conductive member within the second through hole that penetrates through at least the insulating material in the inside of the first through hole.
Abstract:
A semiconductor chip having a vertical current conduction structure of a high aspect ratio and high reliability: a semiconductor device, a circuit substrate, and an electronic apparatus each containing such semiconductor chips; and a method for producing them. A prehole (3) is formed in a silicon substrate (10) surface-oriented to a (100) face by laser beam irradiation. The prehole (3) is enlarged by anisotropic etching to thereby form a through-hole (4). An electrically insulating film is formed on an inner wall of the through-hole (4). An electrically conducting material is provided inside the insulating film to thereby form a metal bump (30).
Abstract:
The present invention provides a technique enabling the amount of time required to evaluate the light fastness of a liquid crystal panel to be shortened. A method of testing the light fastness of a liquid crystal panel comprising a pair of substrates and a liquid crystal layer interposed between the substrates comprises the steps of: irradiating a test subject area of the liquid crystal panel with a laser beam, with at least one of the wavelength, the irradiation energy, and the irradiation duration of the laser beam set as a variable parameter; irradiating the liquid crystal panel with an observation beam and detecting the condition of the observation beam after passing through the liquid crystal panel; and evaluating the light fastness of the liquid crystal panel on the basis of a difference in the condition of the observation beam corresponding to the setting of the variable parameter of the laser beam.