Abstract:
The invention concerns an arrangement for shaping the geometrical cross-sion of a radiation field of a plurality of solid and/or semiconductor laser, in particular a plurality of diode laser arrays or field arrangements whose beam-outlet openings extend in a direction lying in the x-y plane and whose ray beam is radiated in the z direction, the x, y and z directions establishing a rectangular co-ordinate system, with an optical structure for generating a defined cross-section for a radiation field. The optical structure comprises reflective elements onto which the radiation of the respective lasers or laser field arrangements is guided and at which the radiation is reflected. The arrangement according to the invention is characterized in that each laser or laser field arrangement both in the x direction and in the y direction; and in that the reflection surfaces of the reflective elements are disposed in planes which are mutually offset and/or tilted such that the radiation portions reflected by the reflection surfaces are mutually offset perpendicular to the radiation diffusion direction with respect to the offset of the radiation outlet surfaces.
Abstract:
A laser resonant cavity for utilizing media, having an annular cross sect as well as two end mirrors. The end mirrors exhibit a toroidal surface, and at least one end mirror has at least one aperture through which the laser beam can be coupled out.
Abstract:
A single-photon counting imaging system and method includes an optical filter, first and second lenses, a digital micro-mirror device (DMD) control system, a single-photon counter and a data processing unit. The DMD and first and second lenses convert two-dimensional image data into a one-dimensional sequence. The ultra-weak light is filtered by the optical filter, after which the ultra-weak light image onto the DMD through the first lens. The DMD controls the probability of the photons reflected to the second lens and the second lens controls focusing of the photons. The data processing unit and single-photon counter complete sparse reconstruction. The data processing unit converts the number of photons counted by the single-photon counter within a certain period of time into the probability of detected photon counts. A photon density image is reconstructed by adopting an optimization algorithm based on the measurement matrix on the DMD and the measured value.
Abstract:
Optically pumped amplifiers, in particular solid-state amplifiers, comprise an amplification medium (1) and an optical pumping arrangement (5) via which the pumping radiation is coupled to the amplification medium (1), the pumping radiation being formed before coupling. The volume of the amplification medium is only partially pumped; the pumped volume of the amplification medium is approximately rectangular in cross-section and approximately perpendicular to the optical axis; and the ratio of the width to height of the rectangular cross-section is greater than 1:8.
Abstract:
The present invention relates to a process and device for forming and guig the radiation field of one or several solid and/or semiconductor lasers.
Abstract:
An optical arrangement for enlarging spectral bandwidths by nonlinear self-phase modulation for shortening ultrashort pulses using a multipass cell and a nonlinear medium. The nonlinear medium is arranged within the multipass cell, and a laser beam having ultrashort pulses passes through the nonlinear medium multiple times. The laser beam is coupled into the multipass cell by way of a shaping optical unit. The laser beam is shaped into an astigmatic beam and coupled into the multipass cell by way of the shaping optical unit.
Abstract:
The invention relates to a single-photon counting imaging system and a single-photon counting imaging method. The system comprises a optical filter, a first lens, a digital micro-mirror device (DMD) control system, a second lens, a single-photon counter and a data processing unit, where the DMD together with the first lens and the second lens are used for converting two-dimensional image data into a one-dimensional sequence to complete sampling of measured signals; the ultra-weak light is filtered by the optical filter, after which the ultra-weak light image onto the DMD through the first lens, and the DMD control system controls the probability of the photons reflected to the second lens and the second lens controls the focusing of the photons; and the data processing unit together with the single-photon counter to complete sparse reconstruction, and the data processing unit converts the number of photons counted by the single-photon counter within a certain period of time into the probability of detected photon counts, as the measured value, and a photon density image is reconstructed by adopting an optimization algorithm based on the measurement matrix on the DMD and the measured value, thereby solving out the two-dimensional image.
Abstract:
Aerodynamic window for a gas laser, whose active chamber emits a focussed ser beam and is flow connected by means of a beam passage opening with a window chamber connected to a vacuum pump and which has a beam exit opening in an outer area which is preferably under atmospheric pressure. In order to reduce the pumping power necessary for the aerodynamic window and improve the laser beam quality, the window is so constructed that the laser beam emitted by the active chamber has a first focus in the vicinity of the beam passage opening and is deflected onto a focussing mirror arranged in the window chamber and which gives the laser beam leaving the latter a second focus located in the vicinity of the beam exit opening.
Abstract:
The invention relates to a resonator system with at least two folding elements for folding the beam path. Said folding elements serve to restrict the divergence angle of the radiation. The inventive resonator system is further characterized in that the respective folding is caused by reflection on a reflecting surface of the respective folding element. The beam axis of the radiation and the surface normal of the respective reflecting area are positioned at an angle relative to each other that is greater than the critical angle for the total reflection but smaller than the sum of the critical angle for the total reflection plus the divergence angle of the radiation.
Abstract:
A process and device for forming and guiding the radiation field or one or several solid and/or semiconductor lasers, in particular the radiation field of an array or field arrangement of one or several solid and/or semiconductor lasers, comprise radiation transformation optics with refractive elements that generate a defined radiation field. The device is characterized in that the radiation field (4) is subdivided into at least two radiation fractions according to predetermined data. Each radiation fraction enters an associated refractive element (6, 15, 19, 21, 23, 24) with predetermined co-ordinates. Each refractive element (6, 15, 19, 21, 23, 24) refracts the corresponding radiation fraction on at least one of its surfaces (7) so that the radiation fractions leave the refractive elements (6, 15, 19, 21, 23, 24) with output co-ordinates and/or propagation directions modified in relation to each other.