Abstract:
A system includes a first operation device configured to perform an operation with respect to a first target; at least one sensor configured to acquire analog information from the first target; and a control device configured to identify the first target based on at least one type of first digital information among a plurality of types of digital information relating to the first target acquired from the analog information acquired by the at least one sensor, and control the operation by the first operation device with respect to the first target identified based on at least one type of second digital information different from the first digital information among the plurality of types of the digital information.
Abstract:
An image capturing apparatus includes image capturing devices; page memories for the image capturing devices, respectively, each page memory storing a piece of image data output from the corresponding image capturing device; a page-memory read unit configured to read pieces of image data stored in the page memories line by line in a time division manner; an image processing unit configured to perform predetermined image processing on the pieces of image data read from the page memories for the image capturing devices line by line in the time division manner; and a write monitoring unit configured to monitor write states of the pieces of image data that are output from the image capturing devices and written into the page memories, and control the page-memory read unit to start reading the pieces of image data from the page memories.
Abstract:
An optical system includes a central portion having a magnification per unit angle of view which increases from a center to an outside at an increase rate and a circumferential portion being outside the central portion and having a magnification per unit of view which increases from the central portion to an outside at an increase rate smaller than the increase rate of the central portion.
Abstract:
An optical system includes a first lens to focus incident light, a first prism including a reflection surface by which light having transmitted through the first lens is reflected, a second lens to focus incident light from a different direction from a direction of the incident light on the first lens, and a second prism including a reflection surface by which light having transmitted through the second lens is reflected, in which the reflection surface of the first prism and the reflection surface of the second prism oppose each other.
Abstract:
An imaging device includes two imaging optical systems each of the imaging optical systems including a wide-angle lens having an angle of view wider than 180 degrees, and an imaging sensor configured to image an image by the wide-angle lens, so as to obtain an image in a solid angle of 4π radian by synthesizing the images by the respective imaging optical systems, wherein the wide-angle lens of each of the imaging optical systems includes, in order from an object side to an image side, a front group having a negative power, a reflection surface and a back group having a positive power, and is configured to bend an optical axis of the front group by the reflection surface at 90 degrees toward the back group.
Abstract:
An image capture system including two imaging systems of the same structure each having a wide-angle lens, which includes a front group, a reflection surface, and a rear group arranged in order from an object side, has a field angle larger than 180 degrees, and bends an optical axis of the front group toward the rear group by the reflection surface, and an imaging sensor, obtains an image in a solid angle of 4π radian by combining images imaged by the imaging systems. Each of the two wide-angle lenses includes the reflection surface between the front group and the rear group, the reflection surfaces are made to be common to the two imaging systems. This reduces an interval between lenses nearest to the object side in the front groups of the two wide-angle lenses, thereby reducing a distance between maximum field angles of the two wide-angle lenses.
Abstract:
An imaging device includes a filter unit including filter areas having different wavelength selectivities; a light receiving element array configured to receive light transmitted through the filter unit; a storage unit configured to store, for each filter area, positional information indicating a position at which light transmitted is received on the light receiving element array; an area detector configured to detect, based on the positional information, an image area corresponding to the light transmitted from an image output by the light receiving element array when light from an object enters the filter unit; and a color detector configured to detect a color of the object based on an output value of the image area. The positional information indicates a position on the light receiving element array identified by using a spectral-response-coincidence-degree indicating a degree of coincidence between a spectral responsivity of each pixel and a desired wavelength selectivity.
Abstract:
An optical system includes a central portion having a magnification per unit angle of view which increases from a center to an outside at an increase rate and a circumferential portion being outside the central portion and having a magnification per unit of view which increases from the central portion to an outside at an increase rate smaller than the increase rate of the central portion.
Abstract:
An apparatus or system of estimating a spectrum of an object includes a plurality of filters or a plurality of filter areas that respectively have spectral characteristics different from one another, wherein at least two filters or filter areas have transmittance greater than a predetermined value throughout a wavelength range subject for estimation. The image capturing apparatus or system estimates a line spectrum of an object using spectral images of the at least two filters or filter areas having transmittance greater than the predetermined value.
Abstract:
An optical deflector includes a rotary body including a polygon mirror; a rotation shaft fixed to the rotary body; a bearing unit rotatably supporting the rotation shaft; and a board to which the bearing unit is fixed. Where P [rpm] is the number of revolutions of the rotary body, l [m] is a distance between a center of gravity of the rotary body and the board, m [kg] is mass of the rotary body, r [m] is a radius of the rotation shaft, E [Pa] is Young's modulus of the rotation shaft, and t [mm] is a thickness of the board, the following inequalities are satisfied: 1 2 π 3 π Er 4 4 ml 3 ≤ 2 × P 60 and 0.8 ≤ t ≤ 1.8 .