Abstract:
There is provided a laminated body comprising a first resin layer consisting of a first fibrous base material and a resin and a second resin layer consisting of a second fibrous base material and a resin, wherein the first resin layer and the second resin layer are disposed such that the first resin layer and the second resin layer are at least partly positioned in separate regions separated by the center line in a thickness direction of the laminated body; wherein at least one of the first fibrous base material and the second fibrous base material has a bowing region where a bowing region is a region in which a smaller warp/weft crossing angle is less than 90° in the fibrous base material; and wherein in the bowing region, an angle formed by a warp of the first fibrous base material and a warp of the second fibrous base material and an angle formed by a weft of the first fibrous base material and a weft of the second fibrous base material, whichever is larger, is 2° or less.
Abstract:
The object of the present invention is to provide: a method for manufacturing a multilayer printed wiring board which enables the dielectric layers to have excellent thickness uniformity, the capacitor circuits to have high registration accuracy and the unnecessary dielectric layer is removed as large as possible; and a multilayer printed wiring board with an embedded capacitor circuit manufactured by the method. To achieve this object, a method is employed in which a multilayer printed wiring board with an embedded capacitor circuit is manufactured through: a first-conductive-metal-layer laminating step where a dielectric layer and a first conductive metal layer are provided on both sides of a core material having base electrode circuits; an top-electrode forming step where the first conductive metal layer(s) locating as outer layer(s) is(are) processed into top electrodes and the dielectric layer(s) in the area other than those of circuit portions is(are) exposed; a dielectric-layer removing step where the exposed dielectric layer(s), which is(are) in the area other than those of circuit portions, is(are) removed; a second-conductive-metal laminating step where the gaps among the top electrodes are filled in and an insulating layer and a second conductive metal layer are provided on the top electrodes; and an outer layer circuit forming step where the second conductive metal layer(s) is(are) processed into outer layer circuits.
Abstract:
A tensioner device 14 for an engine 1 comprises a support member 16, a blade shoe 17 coming into sliding contact with a timing chain 11 having a base end section 17a held by a cylinder block 3 and a tip end section 17b supported by the support member 16, and a leaf spring 18 held by the blade shoe 1 for pressing the blade shoe 17 against the timing chain 11 elastically. The support member 16 is formed integrally with the cylinder block 3. The tip end section 17b comes into sliding contact with a guide surface 16a formed on the support member 16 to be supported.
Abstract:
An engine has two balancer shafts supported on two bearing bushings which are made of the same material and mounted to a balancer holder. Lubricating oil passages for supplying oil to the bearing bushings are defined offset upwards from the centers O of the bearing bushings and by a distance .delta.. Each of the bearing bushings has two oil bores having a center angle .theta. other than 180.degree.. The two oil bores in the bearing bushing of one balancer shaft communicate with the lubricating oil passage, and one of the oil bores in the bearing bushing of another balancer shaft communicates with the lubricating oil passage, while the other oil bore of that another balancer shaft is closed to keep out of the lubricating oil passage. Thus, downstream ends of the lubricating oil passages for supplying the oil to the bearing bushings of the plurality of rotary shafts can be closed without use of a special closing member such as a blind plug.
Abstract:
A vehicle brake control system includes a regenerative braking control component, a frictional braking control component, a calculating component and a controlling component. The regenerative braking control component controls a regenerative braking device to provide a regenerative braking torque. The frictional braking control component controls a frictional braking device to provide a frictional braking torque. The calculating component calculates a regenerative braking torque filter processing value based on a fluctuation frequency of the regenerative braking torque. The controlling component, during a first condition, operates a motorized power assist control device based on the regenerative braking torque filter processing value, instead of the regenerative braking torque, to moderate the frictional braking torque, such that the regenerative braking torque and the moderated frictional braking torque provide a target braking torque based on a braking operation.
Abstract:
An object is to obtain a dielectric layer constituting material, a capacitor circuit forming piece, etc. in which unnecessary dielectric layer is removed except capacitor circuit parts that improve accuracy of position of an embedded capacitor circuit in a multi-layer printed wiring board. For the purpose of achieving the object, “a method for manufacturing a dielectric layer constituting material characterized in that step a is a step for forming a first electrode circuit by etching a conductor layer on one side of a metal clad dielectric comprising a conductor layer on each side of a dielectric layer; step b is a step for removing the dielectric layer that is exposed between the first electrode circuits to manufacture the dielectric layer constituting material; and the step a is conducted and then the step b is conducted” is adopted. Then as a process for manufacturing a capacitor circuit forming piece, the dielectric layer constituting material obtained above is used and a process for forming a second electrode at a position facing the first electrode is conducted.
Abstract:
A method of manufacturing a semiconductor device is provided which is capable of improving productivity and reliability. The method of manufacturing a semiconductor device (1) of the invention includes a sequential stacking process, an individual stacked body-obtaining process, and a base material bonding process. In the sequential stacking process, a block stacked body is obtained. The block stacked body is a block stacked body (2B) in which semiconductor blocks (10B, 12B, 14B, and 16B) are stacked in a state of not being solder-bonded. In the semiconductor blocks (10B, 12B, 14B, and 16B), a plurality of semiconductor components are arranged. In the individual stacked body obtaining process, an individual stacked body (2) is obtained in which terminals of the stacked semiconductor components are solder-bonded and which is cut from the block stacked body (2B) in a stacked semiconductor component unit.
Abstract:
The present invention provides a solder resist material, which can suppress the warpage of a semiconductor package upon exposure to heat or impact even when used in a thin wiring board and meets a demand for size reduction in electronic devices and a higher level of integration, and a wiring board comprising the solder resist material and a semiconductor package. The solder resist material of the present invention can effectively suppress the warpage of a semiconductor package through a fiber base material-containing layer interposed between resin layers. The fiber base material-containing layer is preferably unevenly distributed in the thickness direction of the solder resist material.
Abstract:
In a process for producing an electronic part which comprises soldering (A) an electronic member having conductor portions I for electric connection having a solder layer or a solder bump (a solder portion) on a surface of a tip and (B) an electronic member to be connected having conductor portions II for electric connection arranged at positions corresponding to positions of conductor portions I by pressing (A) to (B) under heating via an adhesive layer, the solder portion is brought into contact with the adhesive layer, the solder portion is melted by heating at a temperature of or higher than a melting point of the solder, the soldering is conducted by pressing the melted solder portion, and the adhesive layer is cured. An electronic part is obtained in accordance with the process. Electric connection is surely achieved and a highly reliable electronic part can be obtained with excellent productivity.
Abstract:
An object of the present invention is to provide a multi-layered printed wiring board which does not require roughening such as black oxide treatment and the like on inner layer circuits. For the purpose of achieving this object, there is adopted a multi-layered printed wiring board characterized by comprising a primer resin layer P comprising exclusively a resin between each inner layer circuit Ci formed without roughening and an insulating resin layer 5 of the multi-layered printed wiring board. The multi-layered printed wiring board is manufactured by taking the steps such as (a) a steps for producing a primer resin sheet with a carrier film including a 2 micron m to 12 micron m thick primer resin layer; (b) a steps for placing the primer resin sheet on the inner-layer circuit board in which the primer resin layer of the primer resin sheet with a carrier film is placed on the inner layer circuit board and then the carrier film is removed; (c) a steps for pressing in which a pre-preg and a metal foil for forming a conductive layer are superposed on the primer resin sheet, and pressed to form the multi-layered metal clad laminate; and (d) a steps for forming an outer layer circuit wherein the outer layer circuit is formed by etching the outer layer metal foil of the multi-layered metal clad laminate to make the multi-layered printed wiring board.