Abstract:
A method, a computer program product, and a system are disclosed to compensate for bidirectional reflectance distribution function (BRDF). The method including selecting an area of a landscape to be imaged; obtaining a plurality of aerial images of the selected area from a sensor or camera, wherein each of the plurality of aerial images comprises a plurality of pixels; combining the plurality of pixels from each of the plurality of images to form a plurality of superpixels, each of the plurality of superpixels comprising the plurality of pixels from one or more of the plurality of aerial images, and wherein each of the superpixels has a same resolution; combining the plurality of the superpixels into a single image, which simulates a satellite image; and performing a BRDF correction on one more of the obtained aerial images to adjust and/or change an intensity of the plurality of pixels.
Abstract:
A method and system of calibrating multispectral images from a camera on an aerial vehicle, the method including: capturing multispectral images of an area at a plurality of intervals with a multispectral imaging camera; simultaneously or at an arbitrary time capturing sunlight radiance data for each of the captured images; correlating the images with the sunlight radiance data; and calibrating the multispectral images based on the sunlight radiance data to normalize the multispectral images to one or more previous images of the area.
Abstract:
A method, a computer program product, and a system are disclosed for stitching aerial data using information from at least one previous image. The method includes capturing a plurality of images of the landscape; obtaining, image metadata for each of the captured images; generating, for each of the captured images, a set of transformed images based on the image metadata, comprises: setting a variable for each of the parameters; preparing a plurality of sets of transformed image metadata by applying the variables to the parameters; and preparing the set of transformed images from the captured image based on the plurality of sets of transformed image metadata, respectively; identifying, for each set of transformed images, one of the transformed images by calculating quality of fit to the top level image for each of the transformed images; and assembling a new aerial image based on the plurality of the identified transformed images.
Abstract:
A method, a computer program product, and a system is disclosed of obtaining aerial images from an aerial vehicle to avoid shadows produced by the sun, the method comprising: providing the aerial vehicle with one or more cameras configured to capture images of a landscape; and arranging the one or more cameras to capture the images from an angle which is opposite in direction of the sun.