Abstract:
A chemical mechanical polishing apparatus in which a rotating head having a polishing pad mounted thereon whose contact area with a polishing object is smaller than surface area of the polishing object is pressed against and brought into contact with a surface of the polishing object mounted face up on a table, and is rotated with the table at rest while supplying slurry onto a contact surface to polish for a predetermined time, and then the rotating head is moved within the surface of the polishing object to polish the entire surface of the polishing object sequentially, including a pressure adjustment mechanism for maintaining a pressing load on the contact surface constant during polishing.
Abstract:
Provided is a method for manufacturing a coil element, capable of manufacturing a coil element using a resin mold and without performing releasing and transferring, and capable of thinning the coil element. A method for manufacturing a coil element using a resin mold that is soluble in organic solvent, includes, preparing a resin mold, on a surface of which an inverted coil element pattern is engraved, forming a metal seed film on the surface of the resin mold, removing the metal seed film in an area where the inverted coil element pattern is not formed, forming a center conductive film so as to fill an area where the inverted coil element pattern is engraved by first electroplating while using the metal seed film as a base, and dissolving the resin mold to take out the center conductive film.
Abstract:
A method for producing a coil element includes preparing a transfer mold having an inverse coil element pattern etched thereon, forming a peel-away film and an insulating film on the surface of the transfer mold in a superimposed manner, forming a resist film in an area having no inverse coil element pattern formed therein on the insulating film, removing by etching the insulating film with the resist film as a mask, after removing the resist film, filling up an area having the inverse coil element pattern formed therein and forming a central conductive film by first electroplating so as to slightly protrude above the insulating film, peeling the central conductive film from the transfer mold, and forming a surface conductive film by second electroplating with the central conductive film as a foundation and forming a coil element comprised of the central conductive film and the surface conductive film.
Abstract:
A spray coater having a nozzle for spraying a coating liquid, a heater, a slider mounting the nozzle and the heater, and capable of moving reciprocatorily in perpendicular two directions, and a substrate holder holding a substrate so that the surface faces downward with respect to the nozzle, the spray coater forming a thick film by spraying and applying the coating liquid to the surface of the substrate by the nozzle and then heating and drying the coating liquid by the heater, wherein an application of the coating liquid is carried out sequentially by a spray area, and the nozzle and the heater are arranged in parallel so that the drying to the spray area to which the application has been performed is carried out immediately after the application, thereby forming a flat thick film even on a large-sized substrate.