Abstract:
The invention relates to a method for tomographic investigation of a sample (9), in which method a sample (9) is illuminated with an illuminating light bundle (3) and in which a transmitted light bundle (10) that contains the light of the illuminating light bundle (3) transmitted through the sample (9) is detected with a transmission detector (13). The invention further relates to an apparatus for tomographic investigation of a sample (9). Provision is made that the illuminating light bundle (3) and the transmitted light bundle (10) pass in opposite propagation directions through the same objective (7).
Abstract:
An optical device for illuminating a sample located in a sample volume with illumination light and for detecting scattered and/or fluorescent light from the sample includes an optical illumination assembly, an optical detection assembly and at least one attachment element. The optical illumination assembly is configured to transmit the illumination light along an illumination path into the sample volume. The optical detection assembly is configured to collect and relay the scattered and/or fluorescent light from the sample volume along a detection path. At least portions of the illumination path and/or of the detection path extend in the at least one attachment element.
Abstract:
The invention relates to a method for microscopic investigation of a plurality of samples. The method contains the step of arranging the samples in a sample holder that is movable, in particular in motorized and/or automatic fashion, relative to a sample illumination position in such a way that at least one of the samples is respectively successively positionable in the sample illumination position, a clearance for a deflection means respectively remaining adjacent to the sample that is currently located in the sample illumination position; the step of focusing a light stripe with an illumination objective; the step of deflecting the light stripe, once it has passed through the illumination objective, with the deflection means in such a way that the light stripe propagates at an angle different from zero degrees with respect to the optical axis of the illumination objective and has a focus in the sample illumination position; and the step of successively positioning the samples, retained with the sample holder, in the sample illumination position, and detecting the detected light emerging from the sample respectively located in the sample illumination position. The invention furthermore relates to an optical apparatus having a sample holder that holds a plurality of samples and is supported movably, in particular in motorized and/or automatic fashion, relative to a sample illumination position in such a way that at least one of the samples is respectively successively positionable in the sample illumination position.
Abstract:
A method of analyzing a mixed fluorescence response of a plurality of fluorophores in a microscopic sample includes reconstructing individual fluorescence responses from a mixed fluorescence response using spectral un-mixing based on reference emission spectra for fluorophores to be reconstructed, and a procedure for determining and validating reference emission spectra including providing a plurality of image acquisition settings for a sequence of images of the sample equal to, or greater than, the plurality of fluorophores and including an illumination setting for each image, acquiring the sequence of images using the plurality of image acquisition settings and storing each image together with the corresponding illumination setting, determining candidate reference emission spectra for the fluorophores to be reconstructed from the sequence of images of the sample using one or more reference emission spectra determination algorithms, and conditionally using the candidate reference emission spectra as the reference emission spectra in the spectral un-mixing.
Abstract:
The invention relates to a method in which a sample is manipulated with manipulation light, and in which the sample is imaged by means of the SPIM technique under illumination with illumination light, in particular excitation light for fluorescence excitation, in the form of an illumination light sheet. The method is notable for the fact that both the manipulation light and the illumination light are focused by the same objective that is arranged in an objective working position, or by different objectives that are brought successively into an objective working position; and that the manipulation light and/or the illumination light, after passing through the objective, is diverted by means of a diverting device in such a way that it propagates at an angle different from zero degrees with respect to the optical axis of the objective.