Abstract:
There is disclosed a method and components for repairing a fuel cell stack. In particular, the method and components relate to repairing a high temperature fuel cell stack incorporating ceramic components. The method includes identifying a fuel cell bundle within a fuel cell strip to be disconnected from the fuel cell strip, identifying at least one fuel feed pipe portion connected to the fuel cell bundle, and identifying at least one fuel outlet pipe portion connected to the fuel cell bundle. A cutting blade is positioned on the fuel feed pipe portion and cutting through the fuel feed pipe portion, and similarly for the fuel outlet pipe portion. The fuel cell bundle is then removed, and a replacement inserted in its place.
Abstract:
A fuel cell system having a cathode, anode and auxiliary loop is provided. The anode loop may be configured to deliver reformed and unreformed fuel to the fuel cells. Unreformed fuel may be provided to the fuel cells by bypassing a portion of the fuel around a reformer. The unreformed fuel may be reformed in the fuel cell block. The cathode loop may direct a portion of oxidant exhausted from said fuel cells back to the fuel cell through a cathode ejector. The ejector may be supplied with pressurized oxidant that may be heated prior to entering the cathode ejector. The auxiliary loop may combust unused fuel and oxidant to provide the heat transferred to the oxidant prior to the oxidant entering the cathode loop.
Abstract:
A fuel cell unit with a plurality of fuel cells defining a longitudinal axis and a main flow direction coaxial to the longitudinal axis. Fuel cell inlets and fuel cell outlets are arranged at opposite ends of the fuel cell unit and in line with the main flow direction. Also, a component comprising first fluid conduits arranged parallel to the main flow direction, the first fluid conduits comprising first fluid inlets and first fluid outlets arranged at opposite ends of the component and in line with the main flow direction. The component is arranged adjacent the fuel cell unit such that at least one of the first fluid inlets and the first fluid outlets of the component are arranged adjacent at least one of the fuel cell outlets and the fuel cell inlets such that a fluid flow may flow substantially parallel to the longitudinal axis of the apparatus in the first fluid conduits of the component and in the fuel cell unit and when passing from the component to the fuel cell unit or vice versa.
Abstract:
There is disclosed a method and components for repairing a fuel cell stack. In particular, the method and components relate to repairing a high temperature fuel cell stack incorporating ceramic components. The method includes identifying a fuel cell bundle within a fuel cell strip to be disconnected from the fuel cell strip, identifying at least one fuel feed pipe portion connected to the fuel cell bundle, and identifying at least one fuel outlet pipe portion connected to the fuel cell bundle. A cutting blade is positioned on the fuel feed pipe portion and cutting through the fuel feed pipe portion, and similarly for the fuel outlet pipe portion. The fuel cell bundle is then removed, and a replacement inserted in its place.
Abstract:
A fuel cell system and method is provided to control the volumetric ratio of a reformate and unreformed hydrocarbon fuel supplied to a fuel cell configured for in-stack reforming. The system includes a reformer having a number of high and low steam reforming activity channels which provide a full equilibrated fuel stream and a fuel stream having hydrocarbon levels slight lower than the hydrocarbon levels of the hydrocarbon fuel supplied to the reformer, respectively. The fuel streams can be mixed and supplied to the fuel cell to provide in-stack reforming while reducing or inhibiting the formation of carbon in the fuel stack.
Abstract:
There is disclosed a modular fuel cell system including a plurality of tubular segments configured to be fitted together in an end-to-end relationship to form an inner vessel of the modular fuel cell system. Each segment includes a base portion and a top portion that is separable from said base portion. The top portion and the base portion together defining an inner space for housing an integrated block of oxide fuel cells. First and second end caps are provided for sealing the respective segments at first and second opposed ends of the inner vessel, wherein said inner vessel is positioned within an outer vessel and provides a pressure boundary between an inside of the inner vessel and an inside of the outer vessel.
Abstract:
There is provided a fuel cell stack assembly being thermally and mechanically compliant. The fuel cell stack comprises fuel feed pipe and fuel outlet pipe, a plurality of bundles of fuel cell tube sub-assemblies, the bundles being separated by an expansion gap to prevent thermal and mechanical stresses propagating from one bundle to an adjacent bundle.
Abstract:
A fuel cell system having a cathode, anode and auxiliary loop is provided. The anode loop may be configured to deliver reformed and unreformed fuel to the fuel cells. Unreformed fuel may be provided to the fuel cells by bypassing a portion of the fuel around a reformer. The unreformed fuel may be reformed in the fuel cell block. The cathode loop may direct a portion of oxidant exhausted from said fuel cells back to the fuel cell through a cathode ejector. The ejector may be supplied with pressurized oxidant that may be heated prior to entering the cathode ejector. The auxiliary loop may combust unused fuel and oxidant to provide the heat transferred to the oxidant prior to the oxidant entering the cathode loop.
Abstract:
A fuel cell stack which is amenable to simple manufacturing processes and is thermally and mechanically compliant. The fuel cell stack reduces the number of components by combing fuel cell tubes to form tube sub-assemblies, the tube sub-assemblies comprising end fittings connected to the fuel cell tubes, the end fittings provided with at least one or preferably a plurality of channels to provide equal distribution of fuel throughout the fuel cell tubes.
Abstract:
This invention relates to a fuel cell system with an improved arrangement for mixing fuel and oxidant. The present invention relates to a high temperature fuel cell system, in particular to a solid oxide fuel cell system. An ejector is provided with three inlets for a portion of unused oxidant, a portion of unused fuel and a portion of primary oxidant. The ejector mixes and entrains the unused oxidant, a portion of unused fuel and a portion of primary oxidant so rapidly, the time the mixture resides in the ejector is less than the time required for the mixture to ignite.