Abstract:
A method of forming a polymer matrix array includes applying an aqueous solution into wells of a well array. The aqueous solution includes polymer precursors. The method further includes applying an immiscible fluid over the well array to isolate the aqueous solution within the wells of the well array and polymerizing the polymer precursors isolated in the wells of the well array to form the polymer matrix array. An apparatus includes a sensor array, a well array corresponding to the sensor array, and an array of polymer matrices disposed in the well array.
Abstract:
A method of forming a polymer matrix array includes treating a surface within a well of a well array with a surface compound including a surface reactive functional group and a radical-forming distal group; applying an aqueous solution including polymer precursors to the well of the well array; and activating the radical-forming distal group of the surface coupling compound with an initiator and atom transfer radical polymerization (ATRP) catalyst to initiate radical polymerization of the polymer precursors within the well of the well array to form the polymer matrix array.
Abstract:
A method of manufacturing a sensor, the method including forming an array of chemically-sensitive field effect transistors (chemFETs), depositing a dielectric layer over the chemFETs in the array, depositing a protective layer over the dielectric layer, etching the dielectric layer and the protective layer to form cavities corresponding to sensing surfaces of the chemFETs, and removing the protective layer. The method further includes, etching the dielectric layer and the protective layer together to form cavities corresponding to sensing surfaces of the chemFETs. The protective layer is at least one of a polymer, photoresist material, noble metal, copper oxide, and zinc oxide. The protective layer is removed using at least one of sodium hydroxide, organic solvent, aqua regia, ammonium carbonate, hydrochloric acid, acetic acid, and phosphoric acid.