Abstract:
An LED package structure includes a ceramic substrate, a ceramic board, a light-emitting unit, a first adhesive layer, a second adhesive layer, and a cover. The ceramic board having a thru-hole is disposed on the ceramic substrate. The light-emitting unit is disposed on the ceramic substrate and is arranged in the thru-hole of the ceramic board. The first and second adhesive layers are disposed on the ceramic board, and the second adhesive layer covers the first adhesive layer. The cover is fixed on the ceramic board by the first and second adhesive layers. Thus, the shearing force of the LED package structure of the instant disclosure is increased by having the first and second adhesive layers, which are connected to each other.
Abstract:
The instant disclosure relates to a flip-chip LED package module and a method of manufacturing thereof. The method of manufacturing flip-chip LED package module comprises the following steps. A plurality of LEDs is disposed on a carrier. A packaging process is forming a plurality of transparent lens corresponding to LEDs and binding each other by a wing portion. A separating process is proceeding to form a plurality of flip-chip LED structures without the carrier. A bonding process is proceeding to attach at least one flip-chip LED structure on the circuit board.
Abstract:
A light-emitting device includes multiple light-emitting diode units sequentially connected and coupled to a first power source, a switching circuit connected to the light-emitting diode units, a second power source, and a control module. Power provided by the first power source is larger than power provided by the second power source. The second power source is connected to the light-emitting diode units through the switching circuit, which is controlled by the control module to facilitate the delivery of the power of the first power source or the second power source to the light-emitting diode units. When the first power source serves to deliver the power thereof to the light-emitting diode units, the light-emitting diode units may be in a serial conduction. When the second power source serves to deliver the power thereof to the light-emitting diode units, the light-emitting diode units may be in a parallel conduction.
Abstract:
An optoelectronic device includes a substrate, a light emitting/receiving unit, a mask, a light shielding layer, and a first light-transmissive component. The light emitting/receiving unit is disposed on the substrate and includes an emitting/receiving side and a metal pattern disposed on the emitting/receiving side. The emitting/receiving side has an active area, and the metal pattern surrounds the active area. The mask covers the metal pattern. The light shielding layer is disposed on the substrate and surrounds the light emitting/receiving unit. The first light-transmissive component covers the light emitting/receiving unit, the mask, and the light shielding layer.
Abstract:
An off-axis light-emitting device and an image capturing module using the same are provided. The off-axis light-emitting device includes a substrate, a light-emitting chip, and an optical element. The substrate has a mounting surface, and the light-emitting chip for generating a light beam has a light output surface. The light-emitting chip is disposed on the assembly surface. The optical element is disposed on the assembly surface and includes a dome portion. The dome portion is arranged in an optical path of the light beam and extends in a first direction to form an elongated shape. The dome portion has a first reference plane that passes through two opposite side surfaces of the dome portion, and the first reference plane is offset from a geometric center of the light-emitting chip in a second direction, so that the light beam passing through the dome portion forms an off-axis projection light.
Abstract:
A package structure is provided. The package structure includes a substrate, a pair of electrodes, a lighting unit, a wall, and a package compound. The pair of electrodes and the wall are disposed on the substrate, and the wall and the substrate jointly define an accommodating space. The lighting unit is disposed in the accommodating space. The package compound is disposed in the accommodating space such that a top end of the package compound has a W-shaped cross section and the lighting unit is embedded in the package compound.
Abstract:
An LED package structure includes a ceramic substrate, a ceramic board, a light-emitting unit, a first adhesive layer, a second adhesive layer, and a cover. The ceramic board having a thru-hole is disposed on the ceramic substrate. The light-emitting unit is disposed on the ceramic substrate and is arranged in the thru-hole of the ceramic board. The first and second adhesive layers are disposed on the ceramic board, and the second adhesive layer covers the first adhesive layer. The cover is fixed on the ceramic board by the first and second adhesive layers. Thus, the shearing force of the LED package structure of the instant disclosure is increased by having the first and second adhesive layers, which are connected to each other.
Abstract:
A light sensing module includes a substrate, a light sensing unit, a first light-transmissive component, and a light shielding layer. The light sensing unit is disposed on the substrate to sense an intensity of a working light beam, and has an upper light receiving surface and a lateral surface perpendicular to the upper light receiving surface. The first light-transmissive component covers the light sensing unit, and has a first refractive index between a refractive index of the light sensing unit and a refractive index of air. The light shielding layer surrounds the lateral surface and is covered by the first light-transmissive component.
Abstract:
An optoelectronic package and a method for producing the optoelectronic package are provided. The optoelectronic package includes a carrier, a photonic device, a first encapsulant and a second encapsulant. The photonic device is disposed on the carrier. The first encapsulant covers the carrier and is disposed around the photonic device. The second encapsulant covers the first encapsulant and the photonic device. The first encapsulant has a topmost position and a bottommost position, and the topmost position is not higher than a surface of the photonic device.
Abstract:
The instant disclosure relates to a flip-chip LED package module and a method of manufacturing thereof. The method of manufacturing flip-chip LED package module comprises the following steps. A plurality of LEDs is disposed on a carrier. A packaging process is forming a plurality of transparent lens corresponding to LEDs and binding each other by a wing portion. A separating process is proceeding to form a plurality of flip-chip LED structures without the carrier. A bonding process is proceeding to attach at least one flip-chip LED structure on the circuit board.