Abstract:
A method and apparatus for mitigating electromagnetic noise in an electronic device. The method includes generating a trigger clock signal at a first frequency, and generating a second clock signal at a second frequency. The second frequency is higher than the first frequency. The method also includes receiving an input signal with a converter circuit, detecting an event based on the trigger clock signal, and predicting a time for a conversion of the input signal based on the detected event. The method further includes blanking the second clock signal for a predetermined period based on the predicted time for a conversion.
Abstract:
A real-time reconfigurable input/output interface of a controller and a method of reconfiguring the same. The reconfigurable interface enables the controller to communicate with a plurality of peripheral digital subsystem blocks, and includes an input/output interface, a profile memory, and a state machine. The input/output interface includes a plurality of data lines including a shared portion that are shared among the plurality of peripheral digital subsystem blocks. The profile memory stores a plurality of interface profiles, each interface profile defining a configuration of the input/output interface to communicate with an associated one of the peripheral blocks. The state machine is coupled to the profile memory to receive interface profiles and to the input/output interface. In response to each request to communicate with a particular peripheral block, the state machine configures the input/output interface according to the interface profile associated with the particular peripheral block.
Abstract:
A method and device for generating a multi-rate clock signal using a ring voltage-controlled oscillator based phase-locked loop is provided. The device includes a delay line having a length extending beyond a predetermined length required for operation of the phase-locked loop. The device further includes a tap tuning logic circuit coupled to the delay line. The delay line receives an input signal and a tuning voltage from the phase frequency detector, charge pump and loop filter circuits and generates a plurality of tapped output signals. The plurality of tapped output signals is received by the integrated digital multi-rate clock generator configured to create a plurality of clock signals.