Abstract:
A manifold has a frame and a plurality of valves supported by the frame, each valve having a cross gear. The manifold also has a screw drive and a splined rotatable shaft parallel to the screw drive. The manifold further includes a slider driven by the screw drive over the splined rotatable shaft. The slider includes an actuator that protrudes from the slider to engage one of the cross gears to actuate a respective one of the plurality of valves.
Abstract:
A quarter-turn pin valve actuator has a housing and a rotatable core configured to rotate about a central axis inside the housing. The rotatable core has a two bearings mounted to roll in a circular path about the central axis. The actuator comprises a two-position ramped roller plate that is displaced axially when the bearings are rolled a quarter turn. The actuator includes a push plate and a spring disposed between the push plate and the ramped roller plate. The push plate has a central socket for receiving a pin of a pin valve to which the actuator is connected. When the rotatable core is rotated, the bearings exert a force via the ramped roller plate on the push plate which in turn displaces a pin of a pin valve to which the actuator is connected.
Abstract:
A manifold has a frame and a plurality of valves supported by the frame, each valve having a cross gear. The manifold also has a screw drive and a splined rotatable shaft parallel to the screw drive. The manifold further includes a slider driven by the screw drive over the splined rotatable shaft. The slider includes an actuator that protrudes from the slider to engage one of the cross gears to actuate a respective one of the plurality of valves.
Abstract:
Paraffin-containing liquid pour point depressants comprising the reaction product of a hydrocarbyl-substituted phenol and an aldehyde wherein: the olefin used in the preparation of the hydrocarbyl-substituted phenol has a high vinylidene content; the reaction between the hydrocarbyl-substituted phenol and the aldehyde is acid or base catalyzed; and/or the reaction further comprises phenol, are particularly useful for treating crude oils which have an initial pour point of 4° C. or higher, decreasing the fluid's pour point and improving the fluid's low temperature handling properties.
Abstract:
A quarter-turn pin valve actuator has a housing and a rotatable core configured to rotate about a central axis inside the housing. The rotatable core has a two bearings mounted to roll in a circular path about the central axis. The actuator comprises a two-position ramped roller plate that is displaced axially when the bearings are rolled a quarter turn. The actuator includes a push plate and a spring disposed between the push plate and the ramped roller plate. The push plate has a central socket for receiving a pin of a pin valve to which the actuator is connected. When the rotatable core is rotated, the bearings exert a force via the ramped roller plate on the push plate which in turn displaces a pin of a pin valve to which the actuator is connected.
Abstract:
A manifold has a frame and a plurality of valves supported by the frame, each valve having a cross gear. The manifold also has a screw drive and a splined rotatable shaft parallel to the screw drive. The manifold further includes a slider driven by the screw drive over the splined rotatable shaft. The slider includes an actuator that protrudes from the slider to engage one of the cross gears to actuate a respective one of the plurality of valves.
Abstract:
A manifold has a frame and a plurality of valves supported by the frame, each valve having a cross gear. The manifold also has a screw drive and a splined rotatable shaft parallel to the screw drive. The manifold further includes a slider driven by the screw drive over the splined rotatable shaft. The slider includes an actuator that protrudes from the slider to engage one of the cross gears to actuate a respective one of the plurality of valves.
Abstract:
A heat-transferring fin is attached to an electric cable or to a packaged double cable of an electric radiant heating system. The fins can be attached using twist clips. Each twist clip includes an upper gripping member, a lower gripping member connected to the upper member by an upright support member, and a handle portion looping downwardly from the lower gripping member to enable a user to hold the clip and to manually twist the clip to cause the upper and lower gripping members to rotate relative to the fin and cable such that the fin and cable are clipped together. This twist clip enables quick and easy attachment of fins to cables, which greatly reduces the time and effort required to install an electric radiant heating system. This technology can be used in electric radiant floor heating or electric radiant wall heating.
Abstract:
A supply manifold for a hydronic heating or cooling system has a housing a plurality of valves disposed on respective outlets of the housing in a linear arrangement. Each outlet is adapted to connect to a conduit for delivering the liquid to a zone. Each valve controls a flow of the heating or cooling liquid into each respective conduit. The supply manifold has a single actuator for individually actuating one of the valves. A first displacement mechanism, e.g. a screw drive power by an electric motor, displaces the actuator along a longitudinal axis parallel to the linear arrangement of the valves to thereby access any one of the valves. A second displacement mechanism, e.g. a solenoid, displaces the actuator orthogonally to the longitudinal axis to thereby cause engagement or disengagement of the actuator with a selected one of the valves for opening or closing.
Abstract:
A supply manifold for a hydronic heating or cooling system has a housing a plurality of valves disposed on respective outlets of the housing in a linear arrangement. Each outlet is adapted to connect to a conduit for delivering the liquid to a zone. Each valve controls a flow of the heating or cooling liquid into each respective conduit. The supply manifold has a single actuator for individually actuating one of the valves. A first displacement mechanism, e.g. a screw drive power by an electric motor, displaces the actuator along a longitudinal axis parallel to the linear arrangement of the valves to thereby access any one of the valves. A second displacement mechanism, e.g. a solenoid, displaces the actuator orthogonally to the longitudinal axis to thereby cause engagement or disengagement of the actuator with a selected one of the valves for opening or closing.