Methods and apparatus for imaging through fog

    公开(公告)号:US10752158B2

    公开(公告)日:2020-08-25

    申请号:US16269566

    申请日:2019-02-07

    Abstract: A pulsed laser may illuminate a scene that is obscured by dense, dynamic and heterogeneous fog. Light may reflect back to a time-resolved camera. Each pixel of the camera may detect a single photon during each frame. The imaging system may accurately determine reflectance and depth of the fog-obscured target, without any calibration or prior knowledge of the scene depth. The imaging system may perform a probabilistic algorithm that exploits the fact that times of arrival of photons reflected from fog have a Gamma distribution that is different than the Gaussian distribution of times of arrival of photons reflected from the target. The probabilistic algorithm may take into account times of arrival of all types of measured photons, including scattered and un-scattered photons.

    Methods and Apparatus for Imaging Through Fog

    公开(公告)号:US20190241114A1

    公开(公告)日:2019-08-08

    申请号:US16269566

    申请日:2019-02-07

    Abstract: A pulsed laser may illuminate a scene that is obscured by dense, dynamic and heterogeneous fog. Light may reflect back to a time-resolved camera. Each pixel of the camera may detect a single photon during each frame. The imaging system may accurately determine reflectance and depth of the fog-obscured target, without any calibration or prior knowledge of the scene depth. The imaging system may perform a probabilistic algorithm that exploits the fact that times of arrival of photons reflected from fog have a Gamma distribution that is different than the Gaussian distribution of times of arrival of photons reflected from the target. The probabilistic algorithm may take into account times of arrival of all types of measured photons, including scattered and un-scattered photons.

    Methods and apparatus for improved imaging through scattering media

    公开(公告)号:US11609328B2

    公开(公告)日:2023-03-21

    申请号:US16411951

    申请日:2019-05-14

    Abstract: A light source may illuminate a scene that is obscured by fog. Light may reflect back to a time-resolved light sensor. For instance, the light sensor may comprise avalanche photodiodes that are not single-photon sensitive. The light sensor may perform a raster scan. The imaging system may determine reflectance and depth of the fog-obscured target. The imaging system may perform a probabilistic algorithm that exploits the fact that times of arrival of photons reflected from fog have a Gamma distribution that is different than the Gaussian distribution of times of arrival of photons reflected from the target. The imaging system may adjust frame rate locally depending on local density of fog, as indicated by a local Gamma distribution determined in a prior step. The imaging system may perform one or more of spatial regularization, temporal regularization, and deblurring.

Patent Agency Ranking