Abstract:
A radiofrequency plasma generating device, including: a control module generating a control signal at a control frequency, a power supply circuit including a breaker switch controlled by the control signal, the breaker switch applying an excitation signal to an output of the power supply circuit at the control frequency defined by the control signal, a resonator exhibiting a resonant frequency of greater than 1 MHz, connected to the output of the power supply circuit and adapted to generate a voltage for making a spark when it is excited by the excitation signal, and a mechanism monitoring the control module and configured to modify the frequency of the resonator excitation signal in a manner synchronous with the control signal, during application of the excitation signal.
Abstract:
A spark plug including: a central electrode including an upper end and a lower end; an insulating part including an upper portion and a lower portion and surrounds the central electrode so that the lower end of the central electrode extends beyond the lower portion of the insulating part; and a cap including an upper portion and a lower portion that has an end section and that surrounds the insulating part so that the lower portion of the insulating part extends beyond the lower portion of the cap. The insulating part includes an annular groove, on the external periphery thereof, on the lower end of the cap, and the lower end section of the cap is placed in the groove.
Abstract:
A method of igniting a mixture of oxidant and fuel in a combustion chamber of a combustion engine using a spark plug arranged so that it protrudes into the combustion chamber of the engine. The method includes powering the spark plug using a first alternating electrical signal of a frequency higher than 1 MHz, and second powering the spark plug using a second alternating electrical signal of a frequency higher than 1 MHz, the second power taking place after the first powering following a time delay.
Abstract:
A method of igniting a mixture of oxidant and fuel in a combustion chamber of a combustion engine using a spark plug arranged so that it protrudes into the combustion chamber of the engine. The method includes powering the spark plug using a first alternating electrical signal of a frequency higher than 1 MHz, and second powering the spark plug using a second alternating electrical signal of a frequency higher than 1 MHz, the second power taking place after the first powering following a time delay.
Abstract:
A spark plug including: a central electrode including an upper end and a lower end; an insulating part including an upper portion and a lower portion and surrounds the central electrode so that the lower end of the central electrode extends beyond the lower portion of the insulating part; and a cap including an upper portion and a lower portion that has an end section and that surrounds the insulating part so that the lower portion of the insulating part extends beyond the lower portion of the cap. The insulating part includes an annular groove, on the external periphery thereof, on the lower end of the cap, and the lower end section of the cap is placed in the groove.
Abstract:
The invention relates to a device (11) for disinfecting a motor vehicle air-conditioning system (1), said air-conditioning system (1) including: a) circulation means (5) intended to circulate air through an air delivery duct (6) and placed one after the other in said air delivery duct (6) in the direction of air circulation, b) an air filter (8), and c) an evaporator (7). The invention is characterized in that the device (11) includes: a bypass (12) bypassing the evaporator (7) and enabling air circulation between an area located downstream from the evaporator (7) and an area located between the filter (8) and the evaporator (7), a pump (17) capable of circulating the air from the area located downstream from the evaporator (7) to the area located between the filter (8) and the evaporator (7) via the bypass (12), and a plasma generator (18) capable of generating ozone in the bypass (12).
Abstract:
An internal combustion engine including: a pulse current generator; at least one electrode including at least one tip; a mechanism controlling the electrical supply to the electrode by the generator; and a combustion chamber in which the tip of the electrode is positioned, the tip being separated from the inner wall of the chamber by a minimum separation distance. The current generator and the electrode are configured such that the power density generated while the electrode is being supplied is less than 105 watts per cubic centimeter, this power density being equal to the electrical supply power of the electrode divided by the minimum separation distance cubed.
Abstract:
A method for controlling the power supply of a radiofrequency spark plug in an internal combustion engine up to an electric voltage sufficient for generating a highly branched spark. To this end, the electric voltage for powering the spark plug is increased step by step up to an adequate voltage adapted for ignition.
Abstract:
The invention relates to a pumped electron source (1) that includes an ionization chamber (4), an acceleration chamber (2) with an electrode (3) for extracting and accelerating primary ions and forming a secondary-electron beam, characterized in that the pumped electron source (1) includes a power supply (11) adapted for applying to the electrode (3) a positive voltage for urging a primary plasma (17) outside the acceleration chamber (2), and a negative voltage pulse for extracting and accelerating the primary ions and forming a secondary-electron beam.
Abstract:
A device for generating a radiofrequency plasma, which includes a supply module applying, on an output interface, an excitation signal at a setpoint frequency, adapted for generating a spark at the output of a plasma-generation resonator connected to the output interface of the power module, and a control module supplying the setpoint frequency to the power module upon a command for generating the radiofrequency plasma. The control module is configured to determine an optimal excitation frequency, to adapt the setpoint frequency to the resonance conditions of the device after formation of the spark.