Abstract:
A method includes, in one non-limiting embodiment, receiving a command originating from an initiator at a controller associated with a non-volatile mass memory coupled with a host device, the command being a command to write data that is currently resident in a memory of the host device to the non-volatile mass memory; moving the data that is currently resident in the memory of the host device from an original location to a portion of the memory allocated for use at least by the non-volatile mass memory; and acknowledging to the initiator that the command to write the data to the non-volatile mass memory has been executed. An apparatus configured to perform the method is also described.
Abstract:
A method includes, in one non-limiting embodiment, receiving a command originating from an initiator at a controller associated with a non-volatile mass memory coupled with a host device, the command being a command to write data that is currently resident in a memory of the host device to the non-volatile mass memory; moving the data that is currently resident in the memory of the host device from an original location to a portion of the memory allocated for use at least by the non-volatile mass memory; and acknowledging to the initiator that the command to write the data to the non-volatile mass memory has been executed. An apparatus configured to perform the method is also described.
Abstract:
The invention relates to a method comprising measuring the temperature of at least one location of a non-volatile memory; determining if said temperature measurement indicates that the data retention time of data stored at said at least one location is reduced below a threshold; and re-writing said data to said non-volatile memory in a response to a positive determination.
Abstract:
A method for enabling users to select a configuration balance for a memory device is described. The method includes receiving an indication of a memory configuration for a mass memory including two or more of memory cells. One or more memory cells of the mass memory are selected based at least in part on 1) the indication, 2) a current configuration for each of the one or more memory cells and 3) a program-erase count for each of the one or more memory cells. The method also includes determining a new configuration for each of the selected one or more memory cells. For each of the selected one or more memory cells, the configuration of the memory cell is changed from the current configuration to the determined new configuration. Apparatus and computer readable media are also disclosed.
Abstract:
A method for enabling users to select a configuration balance for a memory device is described. The method includes receiving an indication of a memory configuration for a mass memory including two or more of memory cells. One or more memory cells of the mass memory are selected based at least in part on 1) the indication, 2) a current configuration for each of the one or more memory cells and 3) a program-erase count for each of the one or more memory cells. The method also includes determining a new configuration for each of the selected one or more memory cells. For each of the selected one or more memory cells, the configuration of the memory cell is changed from the current configuration to the determined new configuration. Apparatus and computer readable media are also disclosed.
Abstract:
Examples of enabling cache read optimization for mobile memory devices are described. One or more access commands may be received, from a host, at a memory device. The one or more access commands may instruct the memory device to access at least two data blocks. The memory device may generate pre-fetch information for the at least two data blocks based at least in part on an order of accessing the at least two data blocks.
Abstract:
The invention relates to a method comprising measuring the temperature of at least one location of a non-volatile memory; determining if said temperature measurement indicates that the data retention time of data stored at said at least one location is reduced below a threshold; and re-writing said data to said non-volatile memory in a response to a positive determination.
Abstract:
Examples of enabling cache read optimization for mobile memory devices are described. One or more access commands may be received, from a host, at a memory device. The one or more access commands may instruct the memory device to access at least two data blocks. The memory device may generate pre-fetch information for the at least two data blocks based at least in part on an order of accessing the at least two data blocks.
Abstract:
The invention relates to a method comprising measuring the temperature of at least one location of a non-volatile memory; determining if said temperature measurement indicates that the data retention time of data stored at said at least one location is reduced below a threshold; and re-writing said data to said non-volatile memory in a response to a positive determination.
Abstract:
Examples of enabling cache read optimization for mobile memory devices are described. One or more access commands may be received, from a host, at a memory device. The one or more access commands may instruct the memory device to access at least two data blocks. The memory device may generate pre-fetch information for the at least two data blocks based at least in part on an order of accessing the at least two data blocks.