Abstract:
A fuel delivery assembly for delivering a flow of fuel to a fuel injector includes a securing member including a securing member opening extending through the securing member such that the securing member is generally cylindrical. The securing member opening includes an inner surface that includes a securing member projection. The fuel delivery assembly also includes a quill tube including a quill tube opening extending through the quill tube such that the quill tube is generally cylindrical. The quill tube opening is configured to receive the flow of fuel and direct the flow of fuel to the fuel injector. The quill tube includes an outer surface that includes a quill tube projection. The securing member opening is configured to receive at least a portion of the quill tube, and the securing member projection and the quill tube projection are configured to engage in an interference fit.
Abstract:
A valve actuation system is provided. The system has an engine valve moveable between a first position at which the engine valve prevents a flow of fluid relative to the engine valve and a second position at which fluid flows relative to the engine valve. The system also has a first cam adapted to move the engine valve from the first position to the second position during a first lift period in response to a rotation of the first cam. The system has a second cam adapted to move the engine valve from the first position to the second position during a second lift period in response to a rotation of the second cam. The system also has a cam following assembly disposed between the first and second cams and the engine valve. The cam following assembly is adapted to selectively connect one of the first and second cams with the engine valve to thereby move the engine valve through one of the first and second lift periods.
Abstract:
An internal combustion engine includes an engine block defining at least one row of cylinders extending from a first end toward a second end. The internal combustion engine also includes a front housing attached to the first end of the engine block. An idler gear assembly includes an idler gear rotatably mounted on a stub shaft and has a first attachment to the engine block and a second attachment to the front housing. A thrust plate is positioned between the front housing and the idler gear assembly and includes an annular thrust surface, a pair of sealed fastener device openings, and an unsealed lubrication opening.
Abstract:
An internal combustion engine includes an engine block defining at least one row of cylinders extending from a first end toward a second end. The internal combustion engine also includes a front housing attached to the first end of the engine block. An idler gear assembly includes an idler gear rotatably mounted on a stub shaft and has a first attachment to the engine block and a second attachment to the front housing. A thrust plate is positioned between the front housing and the idler gear assembly and includes an annular thrust surface, a pair of sealed fastener device openings, and an unsealed lubrication opening.
Abstract:
An engine cylinder liner is provided. The engine cylinder liner includes a first liner end, a second liner end, and an inner surface extending between the first liner end and the second liner end. The engine cylinder liner also includes a first outer surface between the first liner end and a first outer surface end portion, and a second outer surface between the second liner end and a second outer surface end portion. The second outer surface end portion is closer to the first liner end, than the first outer surface end portion is to the first liner end. The engine cylinder liner further includes an inclined shoulder surface portion between the first and second outer surface end portions.
Abstract:
An internal combustion engine includes an engine block defining at least one row of cylinders extending from a first end toward a second end. A flywheel housing is attached to the first end of the engine block and includes a pump engagement face having a first pump lubrication supply port opening therethrough. A high pressure fuel pump includes a flywheel housing engagement face having a second pump lubrication supply port opening therethrough. The pump engagement face of the flywheel housing abuts the flywheel housing engagement face of the high pressure fuel pump such that the first pump lubrication supply port and the second pump lubrication supply port are in fluid communication.
Abstract:
A condensation dispersion device for use with a power source having an exhaust recirculation system is disclosed. The condensation dispersion device may have a housing with an inlet configured to receive exhaust, and an outlet configured to discharge exhaust. The condensation dispersion device may also have a first static mixing device disposed within the housing and being configured to redirect condensate from an internal wall of the housing into the exhaust.
Abstract:
A fuel-injection system for an engine has a plurality of fuel-system components, including a pump, a fuel injector, and a plurality of fuel-system components connecting the pump to the fuel injector. A portion of the fuel-injection system from the pump to the fuel injector may include a first joint mating a first pair of the fuel-system components, a second joint mating a second pair of the fuel-system components, and a third joint mating a third pair of the fuel-system components. Each of the first joint, the second joint, and the third joint may include a curved surface and a corresponding seat that are mated to one another and that provide a substantially fluid-tight seal and allow variation in the angular relationship between the associated pair of fuel-system components.
Abstract:
A fuel delivery assembly for delivering a flow of fuel to a fuel injector includes a securing member including a securing member opening extending through the securing member such that the securing member is generally cylindrical. The securing member opening includes an inner surface that includes a securing member projection. The fuel delivery assembly also includes a quill tube including a quill tube opening extending through the quill tube such that the quill tube is generally cylindrical. The quill tube opening is configured to receive the flow of fuel and direct the flow of fuel to the fuel injector. The quill tube includes an outer surface that includes a quill tube projection. The securing member opening is configured to receive at least a portion of the quill tube, and the securing member projection and the quill tube projection are configured to engage in an interference fit.
Abstract:
An engine cylinder liner is provided. The engine cylinder liner includes a first liner end, a second liner end, and an inner surface extending between the first liner end and the second liner end. The engine cylinder liner also includes a first outer surface between the first liner end and a first outer surface end portion, and a second outer surface between the second liner end and a second outer surface end portion. The second outer surface end portion is closer to the first liner end, than the first outer surface end portion is to the first liner end. The engine cylinder liner further includes an inclined shoulder surface portion between the first and second outer surface end portions.