Abstract:
Described is a technology by which an owner node in a server cluster maintains ownership of a storage mechanism through a persistent reservation mechanism, while allowing non-owning nodes read and write access to the storage mechanism. An owner node writes a reservation key to a registration table associated with the storage mechanism. Non-owning nodes write a shared key that gives them read and write access. The owner node validates the shared keys against cluster membership data, and preempts (e.g., removes) any key deemed not valid. The owner node also defends ownership against challenges to ownership made by other nodes, so that another node can take over ownership if a (formerly) owning node is unable to defend, e.g., because of a failure.
Abstract:
According to examples, a system may include a plurality of clusters of nodes and a plurality of container manager hardware processors, in which each of the container manager hardware processors may manage the nodes in a respective cluster of nodes. The system may also include at least one service manager hardware processor to manage deployment of customer services across multiple clusters of the plurality of clusters of nodes through the plurality of container manager hardware processors.
Abstract:
Embodiments provide workload processing for clustered systems. In an illustrative, non-limiting embodiment, a computer-implemented method may include identifying a server as an active node of a cluster; assigning a workload to the server in response to the identification; determining, after the assignment, that the server is no longer an active node of the cluster; calculating, in response to the determination, a probability that the server is capable of continuing to execute the workload; and deciding, based upon the probability, whether to allow the workload to remain assigned to the server.
Abstract:
According to examples, an apparatus may include a processor and a memory on which is stored machine readable instructions that are to cause the processor to receive an allocation request from an allocator client, determine a resource allocation for the received job allocation request, store a record of the determined resource allocation in a records store, and send the determined resource allocation to the allocator client, in which an acknowledgement to the sent determined resource allocation is to be received from the allocator client. The instructions may also cause the processor to manage a state of the determined resource allocation using the record stored in the records store based on whether the acknowledgement is received from the allocator client.
Abstract:
Embodiments provide workload processing for clustered systems. In an illustrative, non-limiting embodiment, a computer-implemented method may include identifying a server as an active node of a cluster; assigning a workload to the server in response to the identification; determining, after the assignment, that the server is no longer an active node of the cluster; calculating, in response to the determination, a probability that the server is capable of continuing to execute the workload; and deciding, based upon the probability, whether to allow the workload to remain assigned to the server.
Abstract:
According to examples, an apparatus may include a processor and a memory on which is stored machine readable instructions that are to cause the processor to receive an allocation request from an allocator client, determine a resource allocation for the received job allocation request, store a record of the determined resource allocation in a records store, and send the determined resource allocation to the allocator client, in which an acknowledgement to the sent determined resource allocation is to be received from the allocator client. The instructions may also cause the processor to manage a state of the determined resource allocation using the record stored in the records store based on whether the acknowledgement is received from the allocator client.
Abstract:
Described is a technology by which an owner node in a server cluster maintains ownership of a storage mechanism through a persistent reservation mechanism, while allowing non-owning nodes read and write access to the storage mechanism. An owner node writes a reservation key to a registration table associated with the storage mechanism. Non-owning nodes write a shared key that gives them read and write access. The owner node validates the shared keys against cluster membership data, and preempts (e.g., removes) any key deemed not valid. The owner node also defends ownership against challenges to ownership made by other nodes, so that another node can take over ownership if a (formerly) owning node is unable to defend, e.g., because of a failure.