Abstract:
According to embodiments of the present invention, an optical detection device is provided. The optical detection device includes an optics arrangement configured to generate an annular illumination pattern to illuminate a portion of a sample and further configured to receive a return light from the portion of the sample illuminated by the annular illumination pattern; and a detector arrangement configured to detect the return light. According to further embodiments of the present invention, an optical detection method is also provided.
Abstract:
Embodiments are directed to an optical spectrometry method, comprising: generating a sequence of 2D Hadamard masks along the time dimension, wherein each 2D Hadamard mask is arranged with a wavelength dimension and a coefficient dimension; detecting an optical signal from light transmitted through the sequence of 2D Hadamard masks; and reconstructing a spectrum to be detected by analyzing the optical signal, wherein each 2D Hadamard mask in the sequence of 2D Hadamard masks comprises a plurality of columns along the wavelength dimension, each column corresponding to a different Hadamard coefficient, and having different respective sequency values along the time dimension.
Abstract:
In various embodiments, device for determining a condition of an organ of either a human or an animal may be provided. The device may include a first optical source and a second optical source. The device may also include a detector. The device may additionally include a lens system. The device may further include a switching mechanism configured to switch between an optical examination mode and a Raman mode. The lens system during the optical examination mode may be configured to direct a first light emitted from the first optical source. The lens system during the Raman mode may be configured to direct a second light emitted from the second optical source. The lens systems during the Raman mode may be further configured to direct a third light to the detector.
Abstract:
According to embodiments of the present invention, an optical detection device is provided. The optical detection device includes an optics arrangement configured to generate an annular illumination pattern to illuminate a portion of a sample and further configured to receive a return light from the portion of the sample illuminated by the annular illumination pattern; and a detector arrangement configured to detect the return light. According to further embodiments of the present invention, an optical detection method is also provided.
Abstract:
The present disclosure provides a radio frequency tagging optical spectrometer, comprising: a dynamic dispersion device, the dynamic dispersion device receiving a beam comprising more than two wavelength components and being driven by driving radio frequency signals, and the dynamic dispersion device encoding the intensity of each wavelength component into the amplitude of a different beat radio frequency signal based on different driving radio frequency signals, wherein the beat frequency of the different beat radio frequency signal is equal to the frequency of the corresponding driving radio frequency signal; a single-channel photodetector for detecting the sum of beat radio frequency signals formed by adding all the beat radio frequency signals; and a processing unit for performing Fourier transform on the sum of the beat radio frequency signals to obtain a spectrum or an associated radio frequency spectrum by which the optical spectrum is obtained.
Abstract:
In various embodiments, device for determining a condition of an organ of either a human or an animal may be provided. The device may include a first optical source and a second optical source. The device may also include a detector. The device may additionally include a lens system. The device may further include a switching mechanism configured to switch between an optical examination mode and a Raman mode. The lens system during the optical examination mode may be configured to direct a first light emitted from the first optical source. The lens system during the Raman mode may be configured to direct a second light emitted from the second optical source. The lens systems during the Raman mode may be further configured to direct a third light to the detector.
Abstract:
In various embodiments, a device for determining a condition of an organ of either a human or an animal may be provided. The device may include a first optical source and a second optical source. The device may also include a detector. The device may additionally include a lens system. The device may further include a switching mechanism configured to switch between an optical examination mode and a Raman mode. The lens system during the optical examination mode may be configured to direct a first light emitted from the first optical source. The lens system during the Raman mode may be configured to direct a second light emitted from the second optical source. The lens systems during the Raman mode may be further configured to direct a third light to the detector.