Abstract:
A composition for a polyolefin resin foam, which comprises a polymer component comprising a polyolefin resin, and at least one of a rubber and a thermoplastic olefin elastomer, and powdery particles, wherein said composition has a melt tension of at least 20 cN when measured in a range between a first temperature at a melting point of said composition and a second temperature that is 20 degrees Celsius higher than said first temperature.
Abstract:
A porous polyimide having a finely cellular structure and having a low dielectric constant and heat resistance. The porous polyimide can be produced by a process comprising adding a dispersible compound to a polyimide precursor to form a micro-domain structure in which the dispersible compound is dispersed in the polymer so as to have a size smaller than 10 nullm and then removing the dispersible compound by extraction with supercritical carbon dioxide to thereby make the precursor porous, wherein the interaction parameter nullAB between the polyimide precursor A and the dispersible compound B is larger than 3. This porous polyimide has an average cell diameter smaller than 5 nullm and a dielectric constant of 3 or lower.
Abstract:
The present photosensitive resin composition 2 comprises a polyamic acid resin 4, a photosensitive agent, a dispersible compound 3 dispersible in the polyamic acid resin 4, and a solvent. The porous resin is obtained by removing the solvent from the photosensitive resin composition 2 to form a composition in which the dispersible compound 3 is dispersed in the polyamic acid resin 4, removing the dispersible compound to make the composition porous, and curing the porous photosensitive resin composition. The porous resin enables forming a fine circuit pattern and has a low dielectric constant and, when used as an insulating layer of a circuit board, brings about improved high frequency characteristics.
Abstract:
A method of efficiently removing a low molecular weight substance from a polyimide precursor or polyimide in which the low molecular weight substance is dispersed as micro-domains, without using a large amount of an organic solvent. The method of removing a low molecular weight substance comprises subjecting either a polymer composition having a micro-domain structure made up of a continuous phase comprising a polyimide precursor and, dispersed therein, a discontinuous phase comprising a low molecular weight substance or a polyimide composition obtained from the polymer composition by converting the polyimide precursor into a polyimide to extraction with a combination of supercritical carbon dioxide and a co-solvent to thereby remove the low molecular weight substance. The co-solvent is preferably an aprotic polar solvent, more preferably a nitrogen compound solvent or a sulfur compound solvent.