Abstract:
The invention provides a bio-related substance bonded to a high-molecular-weight polyethylene glycol derivative that does not cause vacuolation of cells. The bio-related substance bonded to a degradable polyethylene glycol derivative is represented by the formula (A): wherein m is 1-7, n1 and n2 are each independently 45-682, p is 1-4, R is an alkyl group having 1-4 carbon atoms, Z is an oligopeptide with 2-8 residues composed of neutral amino acids excluding cysteine, Q is a residue of a compound having 2-5 active hydrogens, D is the bio-related substance, L1, L2, L3, L4 and L5 are each independently a single bond or a divalent spacer, and y is 1-40.
Abstract:
The invention provides a high-molecular-weight polyethylene glycol derivative that does not cause vacuolation of cells. The degradable polyethylene glycol derivative is represented by the following formula (1): wherein m is 1-7, n1 and n2 are each independently 45-682, p is 1-4, R is an alkyl group having 1-4 carbon atoms, Z is an oligopeptide with 2-8 residues composed of neutral amino acids excluding cysteine, Q is a residue of a compound having 2-5 active hydrogens, X is a functional group capable of reacting with a bio-related substance, and L1, L2, L3, L4 and L5 are each independently a single bond or a divalent spacer.
Abstract:
A hydrophilic polymer derivative having a cyclic benzylidene acetal linker represented by the following formula (1): wherein R1 and R6 are each independently a hydrogen atom or a hydrocarbon group; R2, R3, R4 and R5 are each independently an electron-withdrawing or electron-donating substituent or a hydrogen atom; X1 is a chemically reactive functional group; P is a hydrophilic polymer, s is 1 or 2, t is 0 or 1, and s+t is 1 or 2; w is an integer of 1 to 8; and Z1 and Z2 are each independently a selected divalent spacer.
Abstract:
A hydrophilic polymer derivative having a benzylidene acetal linker whose hydrolysis rate at the pH of a weakly acidic environment in the living body can be accurately controlled. A hydrophilic polymer derivative having a benzylidene acetal linker, which is represented by the following formula (1): wherein R1 is a hydrogen atom or a hydrocarbon group; R2, R3, R4, R5, and R6 are each independently a hydrogen atom or a substituent and at least one of R3, R4, and R5 is an electron-withdrawing substituent or at least one of R2 and R6 represents a substituent; X1 is a chemically reactive functional group; P is a hydrophilic polymer; w is an integer of 1 to 8; and Z1 and Z2 are an independently selected divalent spacer.
Abstract:
A biodegradable polyethylene glycol derivative in which a polyethylene glycol chain is linked by an acetal linker capable of accurately controlling the hydrolysis rate under different pH environments in the living body, and whose division rate into a polyethylene glycol chain of low molecular weight in the living body can be accurately controlled. The biodegradable polyethylene glycol derivative is represented by formula (1) or formula (2) as described.
Abstract:
An antibody-drug conjugate having a cyclic benzylidene acetal linker represented by formula (1) or formula (2), wherein Y is an antibody; D is a drug; R1 and R6 are each independently a hydrogen atom or a hydrocarbon group; R2, R3, R4 and R5 are each independently an electron-withdrawing or electron-donating substituent or a hydrogen atom; s is 1 or 2, t is 0 or 1, and s+t is 1 or 2; w is an integer of 1 to 20; and Z1 and Z2 are each independently a selected divalent spacer:
Abstract:
A branched hetero polyethylene glycol according to the present invention is represented by the formula [1]: wherein X and Y represent each an atomic group containing at least a functional group which reacts with a functional group present in a bio-functional molecule to form a covalent bond and the functional group contained in the atomic group X and the functional group contained in the atomic group Y are different from each other; s is an integer of 2 to 8, which represents the number of polyethylene glycol chains; n is the number of average added moles for the polyethylene glycol chain and 20≤n≤2000; and E is a branching linker moiety having s-valent bonding valency for the polyethylene glycol chains and having monovalent bonding valency for the functional group Y.
Abstract:
A multi-arm polyethylene glycol derivative having a narrow molecular weight distribution represented by the formula (1): wherein, L represents a group selected from a linear or branched alkylene, arylene, or cycloalkylene group having two or more carbon atoms and combinations thereof, which may have an ether bond in a chain; X represents a dehydroxylation residue of a linear sugar alcohol having 5 or 7 carbon atoms; m is the number of polyethylene glycol chains bonded to X and represents 4 or 6; n is the average addition molar number of oxyethylene groups and represents an integer of 3 to 600; Y represents a single bond or an alkylene group as further defined herein; and Z represents a chemically reactive functional group.
Abstract:
A method of producing a medical polyoxypropylene polymer and a polyoxypropylene/polyoxyethylene block copolymer including (A) adding to a polyoxypropylene polymer which is obtained by ring-opening polymerization of propylene oxide to a starting substance having an active hydrogen reacting with the propylene oxide and contains allyl ether as an impurity, a tertiary alkoxide of alkali metal in an excess amount based on a molar number of the active hydrogen of the starting substance and heat treating at 115° C. or less to isomerize the allyl ether to propenyl ether; and (B) adding a mineral acid to the product obtained in step (A) to adjust pH to 4 or less and treating at 70° C. or less to hydrolyze the propenyl ether. Also disclosed is a method of producing a medical polyoxypropylene/polyoxyethylene block copolymer which includes performing ring-opening polymerization of ethylene oxide to the polyoxypropylene polymer obtained above.
Abstract:
A hydrophilic polymer derivative having a cyclic benzylidene acetal linker represented by the following formula (1): wherein R1 and R6 are each independently a hydrogen atom or a hydrocarbon group; R2, R3, R4 and R5 are each independently an electron-withdrawing or electron-donating substituent or a hydrogen atom; X1 is a chemically reactive functional group; P is a hydrophilic polymer; s is 1 or 2, t is 0 or 1, and s+t is 1 or 2; w is an integer of 1 to 8; and Z1 and Z2 are each independently a selected divalent spacer.