Abstract:
The present disclosure provides methods for the rapid synthesis of large libraries of spherical nucleid acid (SNA) nanoparticles, their screening for activity, and a machine learning algorithm to analyze the data.
Abstract:
The present technology is directed to the nanoparticles for use as molecular environmental sensors. The nanoparticles comprise a photoluminescence core and a plurality of ligands bound to the core and forming a quencher permeable ligand shell. The ligands comprise a reactive or charged moiety capable of being modulated between a first stand and a second state, and the proportion of ligands in each state determine the permeability of the ligand shell to a photoluminescence quencher.
Abstract:
The present technology is directed to the nanoparticles for use as molecular environmental sensors. The nanoparticles comprise a photoluminescence core and a plurality of ligands bound to the core and forming a quencher permeable ligand shell. The ligands comprise a reactive or charged moiety capable of being modulated between a first stand and a second state, and the proportion of ligands in each state determine the permeability of the ligand shell to a photoluminescence quencher.
Abstract:
Provided herein are antibiotic coated nanoparticles and methods of treating bacterial infection therewith. In particular embodiments, polymyxin B, vancomycin, and/or other antibiotics are linked to nanoparticles (e.g., gold or silica nanoparticles) and utilized for the treatment of bacterial infections.
Abstract:
Provided herein are antibiotic coated nanoparticles and methods of treating bacterial infection therewith. In particular embodiments, polymyxin B, vancomycin, and/or other antibiotics are linked to nanoparticles (e.g., gold or silica nanoparticles) and utilized for the treatment of bacterial infections.
Abstract:
The disclosure is related to compositions comprising a cell and a spherical nucleic acid (SNA) comprising a nanoparticle, an oligonucleotide on the surface of the nanoparticle, and an antigen; and to methods for production of such compositions and their applications, including but not limited to adoptive cell therapy.
Abstract:
The present technology is directed to the nanoparticles for use as molecular environmental sensors. The nanoparticles comprise a photoluminescence core and a plurality of ligands bound to the core and forming a quencher permeable ligand shell. The ligands comprise a reactive or charged moiety capable of being modulated between a first stand and a second state, and the proportion of ligands in each state determine the permeability of the ligand shell to a photoluminescence quencher.
Abstract:
The present disclosure is directed to compositions comprising alkyne oligonucleotides, nanoconjugates prepared from the same, and methods of their use.