Abstract:
An electrospun nanofibrous membrane is sheet like and is formed by multiple glucose oxidase/potassium hexacyanoferrate(III) modified electrospun nanofibers. The glucose oxidase/potassium hexacyanoferrate(III) modified electrospun nanofibers are PVA electrospun nanofibers containing glucose oxidase and potassium hexacyanoferrate(III) homogeneously dispersed therein. The glucose oxidase/potassium hexacyanoferrate(III) modified electrospun nanofibers are PVA electrospun nanofibers and are cross-linked by glutaraldehyde vapor with ultrasonic energy assistance. Graphene modified PVA/GOx electrospun membranes were prepared to examine the immobilization mechanism between graphene and GOx. The electrochemical measurement results show that the sensitivities increased with increasing graphene concentrations up to 20 ppm. The highest sensitivity recorded 38.7 μA/mM was for a PVA/GOx membrane with 20 ppm graphene representing a 109% increase over a membrane made without graphene.
Abstract:
Present invention is related to an ultrathin triboelectric nanogenerator having a positive assembly layer and a negative assembly layer electrically connected together. The positive assembly layer comprises a positive layer and a first electrode. The negative assembly layer comprises a negative layer and a second electrode. The said first electrode and the said second electrode are electrically connected with each other. The positive layer could be a foam layer with under 90 μm thickness and less than 60 μm pore size. The present invention firstly provides the ultrathin triboelectric nanogenerator with PU foam as the positive layer which could achieve better electrical performance compared to any conventional triboelectric nanogenerator.
Abstract:
An electrospun nanofibrous membrane being sheet like and being formed by comprising multiple glucose oxidase/potassium hexacyanoferrate (III) modified electrospun nanofibers, wherein the glucose oxidase/potassium hexacyanoferrate (III) modified electrospun nanofibers are PVA electrospun nanofibers containing glucose oxidase and potassium hexacyanoferrate (III) homogeneously dispersed therein; and the glucose oxidase/potassium hexacyanoferrate (III) modified electrospun nanofibers are PVA electrospun nanofibers and are cross-linked by glutaraldehyde vapor with ultrasonic energy assistance. In the present invention, graphene modified PVA/GOx electrospun membranes were prepared to examine the immobilization mechanism between graphene and GOx. The electrochemical measurement results show that the sensitivities increased with increasing graphene concentrations up to 20 ppm. The highest sensitivity recorded 38.7 μA/mM was for a PVA/GOx membrane with 20 ppm graphene representing a 109% increase over a membrane made without graphene.
Abstract:
An ultrafine fiber printing system contains a moving deck having a nozzle seat that is disposed on the moving deck. A pipe is installed in the nozzle seat, and a nozzle is disposed at the bottom end of the pipe. The upper portion and the lower portion of the pipe are combined with a heat dissipating unit and a heater respectively. The top end of the pipe is connected to a feed tube having an outer end connected with a thread squeezer. A printing platform is disposed around the moving deck. The nozzle is connected to a static electricity supply, and the fiber carrier is grounded. An electric field is formed between the nozzle and the fiber carrier. The droplets exported from the nozzle are stretched into ultrafine fibers to form a patterned fabric or product.
Abstract:
A sound-absorbing material has a membrane having multiple piezoelectric fibers, the fiber density of the membrane is below 50 g/m2, the thickness of the membrane is below 1 mm, sound-absorbing coefficient of the membrane is larger than 0.1 at absorbing frequency at 100 Hz+/-10%, and the sound-absorbing coefficient of the membrane is over 0.05 at absorbing frequency at 800 Hz to 1000 Hz. PVDF electrospinning nanofiber membranes of the present invention are thinner and more flexible compared to conventional sound-absorbing material, the membranes in the present invention performs excellent low frequency sound absorption with very thin membrane.
Abstract translation:吸音材料具有多个压电纤维的膜,膜的纤维密度低于50g / m 2,膜的厚度低于1mm,吸收频率时膜的吸声系数大于0.1 在100Hz +/- 10%时,在800Hz至1000Hz的吸收频率下,膜的吸声系数超过0.05。 本发明的PVDF静电纺丝纳米纤维膜与传统的吸音材料相比更薄且更灵活,本发明的膜具有非常薄的膜的优异的低频吸声。
Abstract:
An ultrafine fiber printing system contains a moving deck having a nozzle seat that disposed on the moving deck. A pipe is installed in the nozzle seat and a nozzle is disposed at the bottom end of the pipe. The upper portion and the lower portion of the pipe are combined with a heat dissipating unit and heater respectively. The top end of the pipe is connected to a feed tube having an outer end being connected with a thread squeezer. A printing platform is disposed around the moving deck. The nozzle is connected to a static electricity supply and the fiber carrier is grounded. An electric field is formed between the nozzle and the fiber carrier. The droplets exported from the nozzle are stretched into ultrafine fibers to form a patterned fabric or product.
Abstract:
A sound-absorbing material has a membrane having multiple piezoelectric fibers, the fiber density of the membrane is below 50 g/m2, the thickness of the membrane is below 1 mm, sound-absorbing coefficient of the membrane is larger than 0.1 at absorbing frequency at 100 Hz+/−10%, and the sound-absorbing coefficient of the membrane is over 0.05 at absorbing frequency at 800 Hz to 1000 Hz. PVDF electrospinning nanofiber membranes of the present invention are thinner and more flexible compared to conventional sound-absorbing material, the membranes in the present invention performs excellent low frequency sound absorption with very thin membrane.
Abstract translation:吸音材料具有多个压电纤维的膜,膜的纤维密度低于50g / m 2,膜的厚度低于1mm,吸收频率时膜的吸声系数大于0.1 在100Hz +/- 10%时,在800Hz至1000Hz的吸收频率下,膜的吸声系数超过0.05。 本发明的PVDF静电纺丝纳米纤维膜与传统的吸音材料相比更薄且更灵活,本发明的膜具有非常薄的膜的优异的低频吸声。
Abstract:
A cigarette filter-triboelectric nanogenerator (CF-TENG) which generates triboelectric power. The cigarette filter-triboelectric nanogenerator (GF-TENG) includes a positive triboelectric material made from recycled cigarette filters (CFs) and a negative triboelectric material made from plastic waste, wherein the cigarette filters were mixed with conductive materials. The cigarette-filter triboelectric nanogenerator (CF-TENG) device exhibits excellent electrical output performance.
Abstract:
Present invention is related to a high performance photothermal conversion materials, membrane, layer structure and applications thereof. The said materials comprise an UV and infrared absorbed material and a visible light absorbed material with at least one of or both of these materials has photothermal conversion ability. These materials could be further produced as a porous membrane or foam layer with a plastic material. Further by layered with another hydrophilic fiber layer, a porous layer structure could be obtained by the present invention with high performance photothermal conversion, uni-direction water transportation and photocatalytic abilities. The present invention could absorb a wide range of light source (UV-to-vis-to-NIP) and convert to another energy like heat solving the insufficiency of conventional photothermal conversion material.
Abstract:
Present invention is related to an ultrathin triboelectric nanogenerator having a positive assembly layer and a negative assembly layer electrically connected together. The positive assembly layer comprises a positive layer and a first electrode. The negative assembly layer comprises a negative layer and a second electrode. The said first electrode and the said second electrode are electrically connected with each other. The positive layer could be a foam layer with under 90 μm thickness and less than 60 μm pore size. The present invention firstly provides the ultrathin triboelectric nanogenerator with PU foam as the positive layer which could achieve better electrical performance compared to any conventional triboelectric nanogenerator.