Abstract:
Electron beam position, size, or shape can be estimated by deflecting the beam to a plurality of apertures, either continuously or step-wise. Beam portions transmitted, absorbed, or scattered can be used to assess position, size, and shape. In other examples, a beam sensing aperture and the beam are oscillated with respect to each other by moving the aperture or varying the beam deflection or both. The beam can be directed to segmented detectors such as a quad detector, and currents in the segments used to assess beam position, shape, or size. The segments can be formed from a single conductive sheet on which the segments are defined but remain attached. After the conductive sheet is secured with an insulative adhesive, portions of the conductive sheet are broken away, leaving aligned segments.
Abstract:
A position encoder for monitoring position of an object includes a target pattern, an illumination system, an image sensor, and a control system. The illumination system generates (i) a first illumination beam that is directed toward and impinges on the target pattern, the first illumination beam having a first beam characteristic; and (ii) a second illumination beam that is directed toward and impinges on the target pattern, the second illumination beam having a second beam characteristic that is different than the first beam characteristic. The image sensor is coupled to the object and is spaced apart from the target pattern. The image sensor senses a first set of information from the first illumination beam impinging on the target pattern and senses a second set of information from the second illumination beam impinging on the target pattern. The control system analyzes the first set of information and the second set of information to monitor the position of the object.
Abstract:
An imaging assembly for directing a pattern of energy at a workpiece includes (i) a reticle that defines a reticle array that includes a plurality of spaced apart, transmitting regions; (ii) an illumination source that generates an illumination beam; and (iii) a director assembly that selectively directs the illumination beam at the reticle array, the director assembly includes a plurality of director elements that are individually controlled to selectively control the beam pattern that is directed at the reticle array.
Abstract:
A position encoder for monitoring position of an object includes a target pattern, an illumination system, an image sensor, and a control system. The illumination system generates (i) a first illumination beam that is directed toward and impinges on the target pattern, the first illumination beam having a first beam characteristic; and (ii) a second illumination beam that is directed toward and impinges on the target pattern, the second illumination beam having a second beam characteristic that is different than the first beam characteristic. The image sensor is coupled to the object and is spaced apart from the target pattern. The image sensor senses a first set of information from the first illumination beam impinging on the target pattern and senses a second set of information from the second illumination beam impinging on the target pattern. The control system analyzes the first set of information and the second set of information to monitor the position of the object.
Abstract:
Alignment patterns that are selected based on device pattern spatial frequencies are defined on a reticle. The alignment patterns can include periodic arrays of lines, spaces, dots, of other pattern elements. Such patterns can be defined as sets associated with a common spatial frequency or frequency range, or some or all sets can include alignment marks having mark elements associated with different spatial frequencies.
Abstract:
An imaging assembly for directing a pattern of energy at a workpiece includes (i) a reticle that defines a reticle array that includes a plurality of spaced apart, transmitting regions; (ii) an illumination source that generates an illumination beam; and (iii) a director assembly that selectively directs the illumination beam at the reticle array, the director assembly includes a plurality of director elements that are individually controlled to selectively control the beam pattern that is directed at the reticle array.