Abstract:
A method for treating chest wall injuries, including rib fractures, flail chest injuries or surgical incisions. The method comprising creating a localized airtight compartment external to the chest wall and fully covering the area of injury, varying the pressure within the compartment, and providing dynamic real-time counter forces that act reciprocal to the intrathoracic pressure changes that occur during ventilation. In a preferred embodiment, the apparatus has the capability of sensing the patient's chest wall motion created by ventilation, a pressure control component capable of varying the pressure within the airtight compartment such that it opposes pressure changes within the chest. The apparatus would be particularly useful in preventing the paradoxical movement of flail chest injuries. The method would also lessen pain experienced by patients with thoracic injuries such as rib fractures and post operative suffering.
Abstract:
A method for treating chest wall injuries, including rib fractures, flail chest injuries or surgical incisions. The method comprising creating a localized airtight compartment external to the chest wall and fully covering the area of injury, varying the pressure within the compartment, and providing dynamic real-time counter forces that act reciprocal to the intrathoracic pressure changes that occur during ventilation. In a preferred embodiment, the apparatus has the capability of sensing the patient's chest wall motion created by ventilation, a pressure control component capable of varying the pressure within the airtight compartment such that it opposes pressure changes within the chest. Said apparatus would be particularly useful in preventing the paradoxical movement of flail chest injuries. The method would also lessen pain experienced by patients with thoracic injuries such as rib fractures and post operative suffering.
Abstract:
A method for improving the cardiac output of a patient who is suffering from pulseless electrical activity or shock and yet still displays some myocardial wall motion including sensing myocardial activity to determine the presence of residual left ventricular pump function having a contraction or ejection phase and a filling or relaxation phase. In such cases, a compressive force is repeatedly applied to the chest based on the sensed myocardial activity such that the compressive force is applied during at least some of the ejection phases and is ceased during at least some of the relaxation phases to permit residual cardiac filling, thereby enhancing cardiac output and organ perfusion. Also incorporated may be a logic circuit capable of utilizing multiple sensing modalities and optimizing the synchronization pattern between multiple phasic therapeutic modalities and myocardial residual mechanical function.
Abstract:
A method to increase the overall hemodynamic efficacy of cardiopulmonary resuscitation (CPR) by alternating between chest compression-decompression cycles optimized to either cardiac output or venous return. The phases of cardiac output and venous return enhancement may themselves by adjusted in their duration and character. The method may enhance mechanical and manual techniques delivered to the anterior or circumferential chest, and be synchronized to adjunctive techniques such as airway, ventilatory or abdominal therapies.
Abstract:
A computer software program that enhances the readability of electronic documents containing abbreviation or acronym. The program automatically identifies abbreviations and acronyms based on their first definitional use. It then identifies each subsequent use of the abbreviation or acronym and substitutes the appropriate full word or phrase for the abbreviation or acronym. Optionally or alternatively, the program may also identify abbreviations or acronyms that are in general use but have not been specifically defined within the document and offers substitution of the appropriate full word or phrase.
Abstract:
A smart electronic communications network comprised of clinicians and experts designed for the purpose of answering diagnostic and clinical questions and queries posed by subscribers and participants in of the network.
Abstract:
A method for treating chest wall injuries, including rib fractures, flail chest injuries or surgical incisions. The method comprising creating a localized airtight compartment external to the chest wall and fully covering the area of injury, varying the pressure within the compartment, and providing dynamic real-time counter forces that act reciprocal to the intrathoracic pressure changes that occur during ventilation. In a preferred embodiment, the apparatus has the capability of sensing the patient's chest wall motion created by ventilation, a pressure control component capable of varying the pressure within the airtight compartment such that it opposes pressure changes within the chest. The apparatus would be particularly useful in preventing the paradoxical movement of flail chest injuries. The method would also lessen pain experienced by patients with thoracic injuries such as rib fractures and post operative suffering.
Abstract:
A method for diagnosing or predicting the risk of shock, the method incorporating an algorithmic combination of optical, electromagnetic, and other sensors, along with their anatomic and temporal patterns. A method for developing the algorithms through iterative optimization using machine learning.
Abstract:
The present invention is a method for improving hemodynamics and clinical outcome of patients suffering cardiac arrest and other low-flow states by combination of circumferential constriction and anteroposterior compression decompression of the chest cardiopulmonary resuscitation. Anteroposterior compression decompression may be provided by a piston mechanism attached to a gantry above the patient. Circumferential constriction may be achieved by inflation of pneumatic bladders or shortening of a band. The on-off sequence and relative force of circumferential constriction and anteroposterior compression decompression may be adjusted so as to improve efficacy.
Abstract:
An apparatus for improving cardiopulmonary resuscitation involves use of a catheter having both an occlusion balloon and a pumping balloon. The occlusion balloon occludes the aorta such that all pumping action will be restricted to the blood vessels above the balloon occlusion. The pumping balloon is cephalad to the occlusion balloon and is preferably pumped in synchronization with external cardiocirculatory resuscitation. The pumping balloon preferably inflates first at the caudal end and then sequentially to the cephalad end in order to provide unidirectional cephalad pumping. Oxygen-carrying fluid may be infused through the lumen into the aorta cephalad of the pumping balloon during use.