Systems and Methods for Adaptive Integration of Hardware and Software Lock Elision Techniques

    公开(公告)号:US20160062796A1

    公开(公告)日:2016-03-03

    申请号:US14936619

    申请日:2015-11-09

    Abstract: Particular techniques for improving the scalability of concurrent programs (e.g., lock-based applications) may be effective in some environments and for some workloads, but not others. The systems described herein may automatically choose appropriate ones of these techniques to apply when executing lock-based applications at runtime, based on observations of the application in the current environment and with the current workload. In one example, two techniques for improving lock scalability (e.g., transactional lock elision using hardware transactional memory, and optimistic software techniques) may be integrated together. A lightweight runtime library built for this purpose may adapt its approach to managing concurrency by dynamically selecting one or more of these techniques (at different times) during execution of a given application. In this Adaptive Lock Elision approach, the techniques may be selected (based on pluggable policies) at runtime to achieve good performance on different platforms and for different workloads.

    Systems and methods for adaptive integration of hardware and software lock elision techniques

    公开(公告)号:US09619281B2

    公开(公告)日:2017-04-11

    申请号:US14936619

    申请日:2015-11-09

    Abstract: Particular techniques for improving the scalability of concurrent programs (e.g., lock-based applications) may be effective in some environments and for some workloads, but not others. The systems described herein may automatically choose appropriate ones of these techniques to apply when executing lock-based applications at runtime, based on observations of the application in the current environment and with the current workload. In one example, two techniques for improving lock scalability (e.g., transactional lock elision using hardware transactional memory, and optimistic software techniques) may be integrated together. A lightweight runtime library built for this purpose may adapt its approach to managing concurrency by dynamically selecting one or more of these techniques (at different times) during execution of a given application. In this Adaptive Lock Elision approach, the techniques may be selected (based on pluggable policies) at runtime to achieve good performance on different platforms and for different workloads.

    Systems and methods for adaptive integration of hardware and software lock elision techniques
    3.
    发明授权
    Systems and methods for adaptive integration of hardware and software lock elision techniques 有权
    硬件和软件锁定技术自适应集成的系统和方法

    公开(公告)号:US09183043B2

    公开(公告)日:2015-11-10

    申请号:US14254758

    申请日:2014-04-16

    Abstract: Particular techniques for improving the scalability of concurrent programs (e.g., lock-based applications) may be effective in some environments and for some workloads, but not others. The systems described herein may automatically choose appropriate ones of these techniques to apply when executing lock-based applications at runtime, based on observations of the application in the current environment and with the current workload. In one example, two techniques for improving lock scalability (e.g., transactional lock elision using hardware transactional memory, and optimistic software techniques) may be integrated together. A lightweight runtime library built for this purpose may adapt its approach to managing concurrency by dynamically selecting one or more of these techniques (at different times) during execution of a given application. In this Adaptive Lock Elision approach, the techniques may be selected (based on pluggable policies) at runtime to achieve good performance on different platforms and for different workloads.

    Abstract translation: 用于提高并发程序(例如基于锁的应用程序)的可扩展性的特殊技术在一些环境中以及对于一些工作负载而言可能是有效的,而不是其他工作负载。 基于当前环境中的应用和当前工作负载的观察,本文所述的系统可以自动选择在运行时执行基于锁的应用时应用的这些技术中适当的系统。 在一个示例中,可以集成两种用于提高锁可伸缩性的技术(例如,使用硬件事务存储器的事务锁定检测和乐观软件技术)。 为此目的而构建的轻量级运行时库可以通过在执行给定应用程序期间动态选择这些技术(在不同时间)中的一个或多个技术来调整其方法来管理并发性。 在这种自适应锁定Elision方法中,可以在运行时选择(基于可插拔策略)的技术,以在不同的平台和不同的工作负载下实现良好的性能。

    Systems and Methods for Adaptive Integration of Hardware and Software Lock Elision Techniques
    4.
    发明申请
    Systems and Methods for Adaptive Integration of Hardware and Software Lock Elision Techniques 有权
    硬件和软件锁定Elision技术的自适应集成系统和方法

    公开(公告)号:US20150026688A1

    公开(公告)日:2015-01-22

    申请号:US14254758

    申请日:2014-04-16

    Abstract: Particular techniques for improving the scalability of concurrent programs (e.g., lock-based applications) may be effective in some environments and for some workloads, but not others. The systems described herein may automatically choose appropriate ones of these techniques to apply when executing lock-based applications at runtime, based on observations of the application in the current environment and with the current workload. In one example, two techniques for improving lock scalability (e.g., transactional lock elision using hardware transactional memory, and optimistic software techniques) may be integrated together. A lightweight runtime library built for this purpose may adapt its approach to managing concurrency by dynamically selecting one or more of these techniques (at different times) during execution of a given application. In this Adaptive Lock Elision approach, the techniques may be selected (based on pluggable policies) at runtime to achieve good performance on different platforms and for different workloads.

    Abstract translation: 用于提高并发程序(例如基于锁的应用程序)的可扩展性的特殊技术在一些环境中以及对于一些工作负载而言可能是有效的,而不是其他工作负载。 基于当前环境中的应用和当前工作负载的观察,本文所述的系统可以自动选择在运行时执行基于锁的应用时应用的这些技术中适当的系统。 在一个示例中,可以集成两种用于提高锁可伸缩性的技术(例如,使用硬件事务存储器的事务锁定检测和乐观软件技术)。 为此目的而构建的轻量级运行时库可以通过在执行给定应用程序期间动态选择这些技术(在不同时间)中的一个或多个技术来调整其方法来管理并发性。 在这种自适应锁定Elision方法中,可以在运行时选择(基于可插拔策略)的技术,以在不同的平台和不同的工作负载下实现良好的性能。

Patent Agency Ranking