Abstract:
An organic electronic component is disclosed. In an embodiment an organic electronic component includes at least one organic layer having a fluorinated sulfonimide metal salt of the following formula: wherein M is either a divalent or higher-valent metal having an atomic mass of greater than 26 g/mol or a monovalent metal having an atomic mass of greater than or equal to 39 g/mol, where 1≤n≤7, and wherein R1, R2 are selected independently of one another from the group consisting of a fluorine-substituted aryl radical, a fluorine-substituted alkyl radical and a fluorine-substituted arylalkyl radical.
Abstract:
In an embodiment a method for producing an optoelectronic component includes providing a substrate, forming a first electrode, depositing an organic functional layer or a plurality of organic functional layers over the substrate by simultaneous vaporization from different sources of a first compound and of a second compound and of a matrix material and forming a second electrode, wherein at least one coordinate bond is formed by the first compound with the second compound and by the first compound with the matrix material and/or by the second compound with the matrix material.
Abstract:
An organic electronic component is disclosed. In an embodiment an organic electronic component includes at least one organic layer having a fluorinated sulfonimide metal salt of the following formula: wherein M is either a divalent or higher-valent metal having an atomic mass of greater than 26 g/mol or a monovalent metal having an atomic mass of greater than or equal to 39 g/mol, where 1≤n≤7, and wherein R1, R2 are selected independently of one another from the group consisting of a fluorine-substituted aryl radical, a fluorine-substituted alkyl radical and a fluorine-substituted arylalkyl radical.
Abstract:
A method produces cross-linked hole-conducting electric layers by converting functionalized p-dopants. The functionalized p-dopants are organic metal complexes containing at least one central atom and organic ligands, wherein the central atom is selected from a metal of the groups 6-15 of the periodic table, and at least one of the organic ligands is selected from the following formulas I-V, in which E independently of one another is oxygen, sulfur, selenium, or N(E1)x, and each Rv has at least one functionalizing group selected from the group RF including —OH, —COOH, —NH2, —NHR′, halogen, C2-C40-alkenyl, -dienyl, -alkinyl, -alkenyloxy, -dienyloxy, -alkinyloxy, acrylic acid, oxetan, oxiran, silane, acrylic acid, anhydride, and cyclobutane or consists of the groups, and G=C(RF)uHvFw where u+v+w=3 and n=1-4.
Abstract:
An optoelectronic component includes a substrate, a first electrode, a second electrode, and at least one organic functional layer, which is arranged between the first electrode and the second electrode. The organic functional layer includes a matrix material, a first compound, and a second compound. The first compound interacts with the second compound, and the first compound and/or the second compound interacts with the matrix material. A conductivity of the organic functional layer is produced by the interactions.
Abstract:
An optoelectronic component includes a substrate, a first electrode, a second electrode, and at least one organic functional layer, which is arranged between the first electrode and the second electrode. The organic functional layer includes a matrix material, a first compound, and a second compound. The first compound interacts with the second compound, and the first compound and/or the second compound interacts with the matrix material. A conductivity of the organic functional layer is produced by the interactions.
Abstract:
An optoelectronic component includes an organic functional layer, having an active region that emits electromagnetic radiation, and a outcoupling element disposed in the beam path of the electromagnetic radiation emitted. The outcoupling element includes a matrix material and a separated phase disposed therein or a multitude of separated phases different than the matrix material. The refractive index of the separated phase is less than the refractive index of the matrix material. The separated phase in the matrix material causes scattering of the electromagnetic radiation is generated in the outcoupling element.
Abstract:
A method produces cross-linked hole-conducting electric layers by converting functionalized p-dopants. The functionalized p-dopants are organic metal complexes containing at least one central atom and organic ligands, wherein the central atom is selected from a metal of the groups 6-15 of the periodic table, and at least one of the organic ligands is selected from the following formulas I-V, in which E independently of one another is oxygen, sulfur, selenium, or N(E1)x, and each Rv has at least one functionalizing group selected from the group RF including —OH, —COOH, —NH2, —NHR′, halogen, C2-C40-alkenyl, -dienyl, -alkinyl, -alkenyloxy, -dienyloxy, -alkinyloxy, acrylic acid, oxetan, oxiran, silane, acrylic acid, anhydride, and cyclobutane or consists of the groups, and G=C(RF)uHvFw where u+v+w=3 and n=1-4.
Abstract:
In an embodiment a method for producing an optoelectronic component includes providing a substrate, forming a first electrode, depositing an organic functional layer or a plurality of organic functional layers over the substrate by simultaneous vaporization from different sources of a first compound and of a second compound and of a matrix material and forming a second electrode, wherein at least one coordinate bond is formed by the first compound with the second compound and by the first compound with the matrix material and/or by the second compound with the matrix material.
Abstract:
An organic electronic device having a charge carrier generation layer is disclosed. In an embodiment an organic electronic device includes a first organic functional layer stack, a second organic functional layer stack and a charge carrier generation layer arranged therebetween, the charge carrier generation layer including an n-conducting region, an organic p-doped region and an intermediate region arranged therebetween, wherein the organic p-doped region has as a p-type dopant a fluorinated sulfonimide metal salt.