Abstract:
An optoelectronic semiconductor chip is disclosed. In an embodiment the optoelectronic semiconductor chip includes a first semiconductor layer sequence having a plurality of microdiodes, and a second semiconductor layer sequence having an active region. The first semiconductor layer sequence and the second semiconductor layer sequence are based on a nitride compound semiconductor material, the first semiconductor layer sequence is before the first semiconductor layer sequence in the direction of growth, and the microdiodes form an ESD protection for the active region.
Abstract:
An optoelectronic semiconductor chip has a first semiconductor layer sequence which comprises a multiplicity of microdiodes, and a second semiconductor layer sequence which comprises an active region. The first semiconductor layer sequence and the second semiconductor layer sequence are based on a nitride compound semiconductor material, the first semiconductor layer sequence is before the first semiconductor layer sequence in the direction of growth, and the microdiodes form an ESD protection for the active region.
Abstract:
A reflective contact layer system and a method for forming a reflective contact layer system for an optoelectronic component are disclosed. In an embodiment the component includes a first p-doped nitride compound semiconductor layer, a transparent conductive oxide layer, a minor layer and a second p-doped nitride compound semiconductor layer arranged between the first p-doped nitride compound semiconductor layer and the transparent conductive oxide layer, wherein the second p-doped nitride compound semiconductor layer has N-face domains at an interface facing the transparent conductive oxide layer, and wherein the N-face domains at the interface have an area proportion of at least 95%.
Abstract:
The invention concerns an optoelectronic component comprising a layer structure with a light-active layer. In a first lateral region the light-active layer has a higher density of V-defects than in a second lateral region.
Abstract:
A semiconductor chip includes a semiconductor body with a semiconductor layer sequence. An active region intended for generating radiation is arranged between an n-conductive multilayer structure and a p-conductive semiconductor layer. A doping profile is formed in the n-conductive multilayer structure which includes at least one doping peak.
Abstract:
In an embodiment an edge-emitting semiconductor laser includes a semiconductor layer sequence having a waveguide region with an active layer disposed between a first waveguide layer and a second waveguide layer and a layer system arranged outside the waveguide region configured to reduce facet defects in the waveguide region, wherein the layer system includes one or more layers with the material composition AlxInyGa1-x-yN with 0≤x≤1, 0≤y
Abstract:
A semiconductor chip includes a semiconductor body with a semiconductor layer sequence. An active region intended for generating radiation is arranged between an n-conductive multilayer structure and a p-conductive semiconductor layer. A doping profile is formed in the n-conductive multilayer structure which includes at least one doping peak.
Abstract:
An optoelectronic semiconductor component includes a layer sequence including a p-doped layer, an n-doped layer and an active zone that generates electromagnetic radiation arranged between the n-doped layer and the p-doped layer, wherein the n-doped layer includes at least GaN, an interlayer is arranged in the n-doped layer, wherein the interlayer includes AlxGa1-xN, wherein 0
Abstract:
An optoelectronic semiconductor component includes a layer sequence including a p-doped layer, an n-doped layer and an active zone that generates electromagnetic radiation arranged between the n-doped layer and the p-doped layer, wherein the n-doped layer includes at least GaN, an interlayer is arranged in the n-doped layer, wherein the interlayer includes AlxGa1-xN, wherein 0
Abstract translation:光电子半导体部件包括层序列,其包括p掺杂层,n掺杂层和产生布置在n掺杂层和p掺杂层之间的电磁辐射的有源区,其中n掺杂层包括在 在n掺杂层中布置了最小的GaN,中间层,其中中间层包括Al x Ga 1-x N,其中0
Abstract:
A method is provided for producing an optoelectronic device, comprising the steps of providing a substrate, applying a nucleation layer on a surface of the substrate, applying and patterning a mask layer on the nucleation layer, growing a nitride semiconductor in a first growth step, wherein webs are laid which form a lateral lattice, wherein the webs have trapezoidal cross-sectional areas in places in the direction of growth, and laterally overgrowing the webs with a nitride semiconductor in a second growth step, to close spaces between the webs.