Abstract:
A support layer is disposed between a first layer of first electrocaloric capacitors and the second layer of second electrocaloric capacitors. The support layer has thermally conductive vias. A voltage source is configured to apply a first voltage thereby applying a first electric field to the first electrocaloric capacitors and a second voltage thereby applying a second electric field to the second electrocaloric capacitors. The first and second electric fields are complementary such that when the first and second electric fields are applied, heat is transferred through the thermally conductive vias from the first electrocaloric capacitors to the second electrocaloric capacitors or from the second electrocaloric capacitors to the first electrocaloric capacitors.
Abstract:
A first thin-film transistor (TFT) communicatively couples a word line to a source signal in response to a selection signal applied to a first gate of the first TFT. The word line used to enable and disable a memory element that is coupled to the word line. A second TFT communicatively decouples the word line from a ground in response to the first signal being applied to a second gate of the second TFT.
Abstract:
A DC/DC converter having an inverter which accepts a DC input voltage, a rectifier that produces a DC output voltage, a resonant tank, and a controller. The inverter includes a first and second switch as does the rectifier. The resonant tank is coupled between the inverter and the rectifier. The controller is configured to independently control and adjust the phase and duty cycle of each of the four switches such that zero-voltage switching occurs for each switch as each switch transitions. The controller utilizes input parameters such as the DC input voltage, a target output voltage, and a target output current to determine the appropriate phase and duty cycle of each of the four switches. Zero-voltage switching occurs for each of the four switches when the switch is transitioning and a voltage across the switch is substantially zero.
Abstract:
One embodiment of the present invention provides an energy-asset control system for utilizing an energy asset to provide one of more modes of operation services. The system includes an economic optimizer configured to identify at least one mode of operation opportunity based on current and/or future market conditions; a prognostics module configured to perform a prognostic analysis associated with the mode of operation opportunity for the energy asset using an existing model, and determine a confidence level associated with the prognostic analysis; and an operation controller. The economic optimizer is further to configured to, in response to the prognostics module determining the confidence level exceeding a predetermined threshold, determine an expected profit of the mode of operation opportunity based on outcomes of the prognostic analysis; and optimize, over a predetermined time period, a usage of the energy asset based on the expected profit of the mode of operation opportunity.
Abstract:
A hybrid vehicle includes at least one axle, an energy storage device disposed within the hybrid vehicle, a fuel consuming engine, a power boosting feature, and a controller. The fuel consuming engine is operably connected to selectively provide power to at least one of the energy storage device and the at least one axle. The engine is capable of providing at least the mean but less than a peak power to drive the hybrid vehicle over a typical route. The power boosting feature is configured to provide the fuel consuming engine with additional power to achieve a desired power to accelerate the hybrid vehicle. The controller is adapted to selectively control power flow to the one or more axles from one or more of the energy storage device, the engine, and the power boosting feature to achieve the desired power.
Abstract:
An electrocaloric with active regeneration includes first and second electrocaloric capacitors proximate one another enabling heat transfer there between. In the system, complementary first and second electric fields are applied to their respective electrocaloric capacitors such that when the electric fields are applied the temperature of the first electrocaloric capacitor increases while the temperature of the second electrocaloric capacitor decreases or vice-versa. Shifting of one or both of the electrocaloric capacitors relative to one another assists in heat transfer between the two and may additionally transfer heat from an object to be cooled, which is connected to the first electrocaloric capacitor, to a heat sink, which is connected to a second electrocaloric capacitor.
Abstract:
A capacitor device includes a plurality of capacitors arranged into a shape. Each capacitor of the plurality of capacitors has a first external electrode on a first side of the capacitor and a second external electrode on a second side of the capacitor opposing the first side. A first plate is proximate and electrically coupled to the first external electrodes of the capacitors. A second plate is proximate and electrically coupled to the second external electrodes of the capacitors.
Abstract:
A capacitor device includes a plurality of capacitors arranged into a shape. Each capacitor of the plurality of capacitors has a first external electrode on a first side of the capacitor and a second external electrode on a second side of the capacitor opposing the first side. A first plate is proximate and electrically coupled to the first external electrodes of the capacitors. A second plate is proximate and electrically coupled to the second external electrodes of the capacitors.
Abstract:
A capacitor device includes a plurality of capacitors arranged into a shape. Each capacitor of the plurality of capacitors has a first external electrode on a first side of the capacitor and a second external electrode on a second side of the capacitor opposing the first side. A first plate is proximate and electrically coupled to the first external electrodes of the capacitors. A second plate is proximate and electrically coupled to the second external electrodes of the capacitors.
Abstract:
Hybrid vehicle design circuitry quantifies values for utility/disutility variables of a hybrid vehicle design by evaluating a hybrid vehicle model over a collection of drive cycles/routes. The utility/disutility values include at least one of: total time or additional time beyond a reference time needed for the hybrid vehicle design to complete the drive cycles/routes, a fraction or number of the drive cycles/routes for which the hybrid vehicle design fails to achieve a target velocity, and amount of time or distance over which the hybrid vehicle design fails to achieve a target acceleration or the target velocity over the drive cycles/routes. The hybrid vehicle design circuitry calculates one or more specifications of a hybrid vehicle design based on the utility/disutility values.