Abstract:
Provided are high-strength steel having superior brittle crack arrestability and a production method therefor. The high-strength steel comprises 0.05-0.1 wt % of C, 1.5-2.2 wt % of Mn, 0.3-1.2 wt % of Ni, 0.005-0.1 wt % of Nb, 0.005-0.1 wt % of Ti, 0.1-0.5 wt % of Cu, 0.1-0.3 wt % of Si, at most 100 ppm of P, and at most 40 ppm of S with the remainder being Fe and other inevitable impurities, has microstructures including one structure selected from the group consisting of a single-phase structure of ferrite, a single phase structure of bainite, a complex-phase structure of ferrite and bainite, a complex-phase structure of ferrite and pearlite, and a complex-phase structure of ferrite, bainite, and pearlite, and has a thickness of at least 50 mm. The high-strength steel has high yield strength and superior brittle crack arrestability.
Abstract:
There are provided an expandable high-strength steel material and an expanded high-strength steel pipe having excellent expandability and collapse resistance, and methods for manufacturing the expandable high-strength steel material and the expanded high-strength steel pipe. The expandable high-strength steel material including, by weight, manganese (Mn): 12% to 18%, carbon (C): 0.3% to 0.6%, and a balance of iron (Fe) and inevitable impurities, wherein the carbon (C) and the manganese (Mn) satisfy the following condition: 23≦35.5C+Mn≦38. Before being expanded, the expandable high-strength steel material has an austenite single phase microstructure, and after being expanded, the expandable high-strength steel material has a microstructure including 5 area % to 50 area % martensite and 50 area % to 95 area % austenite.
Abstract:
An aspect of the present invention relates to a low yield ratio and high-strength steel having excellent stress corrosion cracking resistance and low temperature toughness, the steel comprising, by weight, 0.02-0.10% of carbon (C), 0.5-2.0% of manganese (Mn), 0.05-0.5% of silicon (Si), 0.05-1.0% of nickel (Ni), 0.005-0.1% of titanium (Ti), 0.005-0.5% of aluminum (Al), 0.005% of less of niobium (Nb), 0.015% or less of phosphorus (P), 0.015% or less of sulfur (S), and the balanced amount of Fe and inevitable impurities, the microstructure of which comprises: by area, 60% or more of acicular ferrite and a balanced amount of one or more phases of bainite, polygonal ferrite and martensite-austenite constituent (MA).
Abstract:
The present invention provides a high-strength steel and a production method therefor, the high-strength steel: comprising, in wt %, C: 0.05-0.09%, Mn: 1.5-2.2%, Ni: 0.3-1.2%, Nb: 0.005-0.04%, Ti: 0.005-0.004%, Cu: 0.1-0.8%, Si: 0.05-0.03%, Al: 0.005-0.05%, P: 100 ppm or less, S: 40 ppm or less, and a remainder made up by Fe and other inevitable impurities; having a center part microstructure comprising an acicular ferrite and granular bainite mixed-phase, upper bainite, and a remainder made up by one type or more selected from the group consisting of ferrite, pearlite, and a martensite-austenite (MA) constituent; having, in a 2 mm or less subsurface region, a surface part microstructure comprising ferrite and a remainder made up by one type or more among bainite and martensite, and having a welding heat affected zone, which is formed during welding, that comprises, in area %, 5% or less of a martensite-austenite constituent.
Abstract:
One embodiment of the present invention provides an ultra-thick structural steel having excellent brittle crack initiation resistance, and a manufacturing method therefor, the ultra-thick structural steel comprising, by wt %, 0.03-0.08% of C, 1.6-2.2% of Mn, 0.6-1.3% of Ni, 0.005-0.03% of Nb, 0.005-0.02% of Ti, 0.1-0.4% of Cu, 100 ppm or less of P, 40 ppm or less of S, 1.5 ppm or less of H, and the balance of Fe and other inevitable impurities, wherein the sum of acicular ferrite and granular bainite in the microstructure is 80% or more by area fraction, the sum of the total length of cracks having a size of 30 μm or more per unit area of 1 mm2 in a ±1 mm region on the basis of the thickness center of the steel is 130 μm or less, and the yield strength is 500 MPa or more.
Abstract:
Provided are high-strength steel having superior brittle crack arrestability and a production method therefor. The structural ultra-thick steel comprises 0.05-0.1 wt % of C, 0.9-1.5 wt % of Mn, 0.8-1.5 wt % of Ni, 0.005-0.1 wt % of Nb, 0.005-0.1 wt % of Ti, 0.1-0.6 wt % of Cu, 0.1-0.4 wt % of Si, at most 100 ppm of P, and at most 40 ppm of S with the remainder being Fe and other inevitable impurities, has microstructures including one structure selected from the group consisting of a single-phase structure of ferrite, a single-phase structure of bainite, a complex-phase structure of ferrite and bainite, a complex-phase structure of ferrite and pearlite, and a complex-phase structure of ferrite, bainite, and pearlite, and has a thickness of at least 50 mm. The high-strength steel has high yield strength and superior brittle crack arrestability.
Abstract:
Steel for low-temperature service having a high degree of surface processing quality comprises: manganese (Mn): 15 wt % to 35 wt %, carbon (C) satisfying conditions of: 23.6C+Mn≧28 and 33.5C−Mn≦23, copper (Cu): 5 wt % or less (excluding 0 wt %), nitrogen (N): 1 wt % or less (excluding 0 wt %), chromium (Cr) satisfying a condition of: 28.5C+4.4Cr≦57, nickel (Ni): 5 wt % or less, molybdenum (Mo): 5 wt % or less, silicon (Si): 4 wt % or less, aluminum (Al): 5 wt % or less, and a balance of iron (Fe) and inevitable impurities. Stacking fault energy (SFE) of the steel is 24 mJ/m2 or greater. The SFE is calculated by a formula: SFE (mJ/m2)=1.6Ni−1.3Mn+0.06Mn2−1.7Cr+0.01Cr2+15Mo−5.6Si+1.6Cu+5.5Al−60(C+1.2N)1/2+26.3(C+1.2N)(Cr+Mn+Mo)1/2+0.6[Ni(Cr+Mn)]1/2.
Abstract:
The present invention relates to a steel plate for use in ships and the like, which has excellent toughness in a heat-affected zone (HAZ), even when a steel material having high strength and high ductility is welded with a certain amount of heat input or more, and to a method for manufacturing same.
Abstract:
The present invention provides a high-strength steel and a production method therefor, the high-strength steel: comprising, in wt %, C: 0.05-0.09%, Mn: 1.5-2.0%, Ni: 0.3-0.8%, Nb: 0.005-0.04%, Ti: 0.005-0.04%, Cu: 0.1-0.5%, Si: 0.05-0.3%, Al: 0.005-0.05%, P: 100 ppm or less, S: 40 ppm or less, and a remainder made up by Fe and other inevitable impurities; having a center part microstructure comprising, in area %, 70% or more of acicular ferrite and 10% or more of pearlite, wherein the equivalent circular diameter of the pearlite is 15 μm(micrometers) or less; having, in a 2 mm or less subsurface region, a microstructure comprising, in area %, 30% or more of one type or more among ferrite and a remainder made up by bainite, martensite, and pearlite; and having a welding heat affected zone, which is formed when welding, that comprises, in area %, 5% or less of a martensite-austenite constituent.
Abstract:
Provided are structural ultra-thick steel having excellent resistance to brittle crack propagation and a production method therefor. The structural ultra-thick steel comprises 0.02-0.1 wt % of C, 0.8-2.5 wt % of Mn, 0.05-1.5 wt % of Ni, 0.005-0.1 wt % of Nb, and 0.005-0.1 wt % of Ti with the remainder being Fe and other inevitable impurities, and has microstructures including one structure selected from the group consisting of a single-phase structure of ferrite, a single-phase structure of bainite, a complex-phase structure of ferrite and bainite, a complex-phase structure of ferrite and pearlite, and a complex-phase structure of ferrite, bainite, and pearlite. The ultra-thick structural steel has excellent resistance to brittle crack propagation, excellent yield strength and an excellent impact transition temperature in the center.