Abstract:
Provided are high-strength steel having superior brittle crack arrestability and a production method therefor. The structural ultra-thick steel comprises 0.05-0.1 wt % of C, 0.9-1.5 wt % of Mn, 0.8-1.5 wt % of Ni, 0.005-0.1 wt % of Nb, 0.005-0.1 wt % of Ti, 0.1-0.6 wt % of Cu, 0.1-0.4 wt % of Si, at most 100 ppm of P, and at most 40 ppm of S with the remainder being Fe and other inevitable impurities, has microstructures including one structure selected from the group consisting of a single-phase structure of ferrite, a single-phase structure of bainite, a complex-phase structure of ferrite and bainite, a complex-phase structure of ferrite and pearlite, and a complex-phase structure of ferrite, bainite, and pearlite, and has a thickness of at least 50 mm. The high-strength steel has high yield strength and superior brittle crack arrestability.
Abstract:
An aspect of the present invention relates to a low yield ratio and high-strength steel having excellent stress corrosion cracking resistance and low temperature toughness, the steel comprising, by weight, 0.02-0.10% of carbon (C), 0.5-2.0% of manganese (Mn), 0.05-0.5% of silicon (Si), 0.05-1.0% of nickel (Ni), 0.005-0.1% of titanium (Ti), 0.005-0.5% of aluminum (Al), 0.005% of less of niobium (Nb), 0.015% or less of phosphorus (P), 0.015% or less of sulfur (S), and the balanced amount of Fe and inevitable impurities, the microstructure of which comprises: by area, 60% or more of acicular ferrite and a balanced amount of one or more phases of bainite, polygonal ferrite and martensite-austenite constituent (MA).
Abstract:
The present invention provides a high-strength steel and a production method therefor, the high-strength steel: comprising, in wt %, C: 0.05-0.09%, Mn: 1.5-2.2%, Ni: 0.3-1.2%, Nb: 0.005-0.04%, Ti: 0.005-0.004%, Cu: 0.1-0.8%, Si: 0.05-0.03%, Al: 0.005-0.05%, P: 100 ppm or less, S: 40 ppm or less, and a remainder made up by Fe and other inevitable impurities; having a center part microstructure comprising an acicular ferrite and granular bainite mixed-phase, upper bainite, and a remainder made up by one type or more selected from the group consisting of ferrite, pearlite, and a martensite-austenite (MA) constituent; having, in a 2 mm or less subsurface region, a surface part microstructure comprising ferrite and a remainder made up by one type or more among bainite and martensite, and having a welding heat affected zone, which is formed during welding, that comprises, in area %, 5% or less of a martensite-austenite constituent.
Abstract:
A high strength steel sheet comprises 0.02 to 0.12 wt % of carbon (C), 0.5 to 2.0 wt % of manganese (Mn), 0.05 to 0.5 wt % of silicon (Si), 0.05 to 1.0 wt % of nickel (Ni), 0.005 to 0.1 wt % of titanium (Ti), 0.005 to 0.5 wt % of aluminum (Al), 0.015 wt % or less of phosphorus (P), 0.015 wt % or less of sulfur (S), and the balance of Fe and other inevitable impurities. The microstructure thereof includes 70% to 90% of ultrafine ferrite and 10% to 30% of MA (martensite/austenite) structure by area fraction, and the yield ratio (YS/TS) thereof is 0.8 or less.
Abstract:
The present invention provides a high-strength steel and a production method therefor, the high-strength steel: comprising, in wt %, C: 0.05-0.09%, Mn: 1.5-2.0%, Ni: 0.3-0.8%, Nb: 0.005-0.04%, Ti: 0.005-0.04%, Cu: 0.1-0.5%, Si: 0.05-0.3%, Al: 0.005-0.05%, P: 100 ppm or less, S: 40 ppm or less, and a remainder made up by Fe and other inevitable impurities; having a center part microstructure comprising, in area %, 70% or more of acicular ferrite and 10% or more of pearlite, wherein the equivalent circular diameter of the pearlite is 15 μm(micrometers) or less; having, in a 2 mm or less subsurface region, a microstructure comprising, in area %, 30% or more of one type or more among ferrite and a remainder made up by bainite, martensite, and pearlite; and having a welding heat affected zone, which is formed when welding, that comprises, in area %, 5% or less of a martensite-austenite constituent.
Abstract:
Provided are structural ultra-thick steel having excellent resistance to brittle crack propagation and a production method therefor. The structural ultra-thick steel comprises 0.02-0.1 wt % of C, 0.8-2.5 wt % of Mn, 0.05-1.5 wt % of Ni, 0.005-0.1 wt % of Nb, and 0.005-0.1 wt % of Ti with the remainder being Fe and other inevitable impurities, and has microstructures including one structure selected from the group consisting of a single-phase structure of ferrite, a single-phase structure of bainite, a complex-phase structure of ferrite and bainite, a complex-phase structure of ferrite and pearlite, and a complex-phase structure of ferrite, bainite, and pearlite. The ultra-thick structural steel has excellent resistance to brittle crack propagation, excellent yield strength and an excellent impact transition temperature in the center.
Abstract:
Provided are high-strength steel having superior brittle crack arrestability and a production method therefor. The high-strength steel comprises 0.05-0.1 wt % of C, 1.5-2.2 wt % of Mn, 0.3-1.2 wt % of Ni, 0.005-0.1 wt % of Nb, 0.005-0.1 wt % of Ti, 0.1-0.5 wt % of Cu, 0.1-0.3 wt % of Si, at most 100 ppm of P, and at most 40 ppm of S with the remainder being Fe and other inevitable impurities, has microstructures including one structure selected from the group consisting of a single-phase structure of ferrite, a single phase structure of bainite, a complex-phase structure of ferrite and bainite, a complex-phase structure of ferrite and pearlite, and a complex-phase structure of ferrite, bainite, and pearlite, and has a thickness of at least 50 mm. The high-strength steel has high yield strength and superior brittle crack arrestability.
Abstract:
Provided are high-strength steel having superior brittle crack arrestability and a production method therefor. The high-strength steel comprises 0.05-0.1 wt % of C, 0.9-1.5 wt % of Mn, 0.8-1.5 wt % of Ni, 0.005-0.1 wt % of Nb, 0.005-0.1 wt % of Ti, 0.1-0.6 wt % of Cu, 0.1-0.4 wt % of Si, at most 100 ppm of P, and at most 40 ppm of S with the remainder being Fe and other inevitable impurities, and has microstructures including one structure selected from the group consisting of a single-phase structure of ferrite, a single-phase structure of bainite, a complex-phase structure of ferrite and bainite, a complex-phase structure of ferrite and pearlite, and a complex-phase structure of ferrite, bainite, and pearlite. The high-strength steel has high yield strength and superior brittle crack arrestability.