Abstract:
A metallurgical vessel (2) having an outer surface (2a) and an identification tag (1, 1′, 1″) on the outer surface (2a). The tag has a carrier matrix (11) formed of an electrically and thermally insulating material. At least two passive transponders (3, 3a, 3b) are embedded in the carrier matrix (11). Within a metallurgical plant, a reading station (4) for tracking the path of the metallurgical vessel (2) is arranged at a tracking position. An antenna (5) of the reading station (4) initiates activation of the passive transponders (3, 3a, 3b), provided that the metallurgical vessel (2) is in a sensing range of the reading station (4). A reading unit (6) of the reading station (4) reads out the activated passive transponders (3, 3a, 3b) and transmits the result to an evaluating unit (7) of the reading station (4). The evaluating unit (7) determines which and/or how many of the passive transponders (3, 3a, 3b) were actually activated. The evaluating unit (7) thereafter associates a wear state with all the passive transponders (3, 3a, 3b) of the metallurgical vessel (2) as a whole.
Abstract:
A method for monitoring a pressurized gas-based cleaning process in a hose filter installation (2): during a cleaning process, a throughflow (Q) of a pressurized-gas flow during a predefinable time period (T) is determined, a throughflow characteristic (V) is determined using the determined throughflow (Q) of the pressurized-gas flow, and the pressurized gas-based cleaning process is monitored using the throughflow characteristic (V), wherein the throughflow characteristic (V) is a pressurized-gas quantity that has flowed in the predefinable time period (T). A monitoring system (40) for a hose filter installation (2) has at least one throughflow sensor (44) for determining a throughflow (Q) of a pressurized-gas flow, and a control unit (42) for controlling a pressurized gas-based cleaning process, wherein the throughflow sensor (44) is a volume flow sensor or a mass flow sensor, and the control unit (42) is set up for carrying out the method.
Abstract:
A rail for a rail vehicle track that has a longitudinal extension (L), an apparatus for identifying the rail, and a method for identifying the rail. An identification marker is attached along the longitudinal extension (L) of the rail on an inner side and/or an outer side of the rail. The identification marker is composed of a plurality of symbols, each symbol having at least one partial length (TL) of 0.15 meters, and one identification marker having at least eight symbols. The rail makes it possible for the rail vehicle to identify the rail laid as track during travel in normal operation.
Abstract:
A device for capturing and transmitting data of a bearing of a steel mill or rolling mill includes a sensor with a data processing unit arranged in a bearing housing capturing and storing data of a bearing. A data transmission unit in the bearing housing wirelessly transmits data of the sensor to a remote receiver. An energy receiving unit in the bearing housing receives energy wirelessly and transmits it to the data transmission unit and the data processing unit. An energy source with an energy transmitting unit arranged outside the bearing housing supply the energy unit wirelessly. The energy transmitting unit is covered by the bearing housing and is arranged on or in a structural part which adjoins the bearing housing and is part of the supporting structure of mill and remains on the supporting structure of the mill when the bearing housing is removed for maintenance purposes.
Abstract:
A method for detecting a cleaning process in a plant having filters (1, 31) arranged spatially offset from one another, wherein a first gas (21) having solid particles (20) is conducted in a first flow direction (10) filtered by a respective filter (1, 31). To clean the respective filter (1, 31), a second gas (22) is conducted through the filter (1, 31) opposite the first flow direction (10). Then listen to noise produced in the filtering or other physical phenomena to determine a condition of the filter including if it is being cleaned. To detect a cleaning process in a plant, a respective noise (12) is detected by acoustic sensors (2, 32, 2′, 32′, 42) arranged spatially offset from one another during the cleaning of the respective filter (1, 31). Further disclosed are a system for detecting a cleaning process in a plant having such filters, and such a plant.
Abstract:
An electronics protection housing which reliably protects electronics (1) therein from heat or hot liquids has an inner housing part (2) at least partially enclosing the electronics (1) and at least one outer housing part (3) at least partially enclosing the inner housing part (2) and which can be fastened on the inner housing part (2) by a mechanically removable connection, wherein the at least one outer housing part (3) has at least one layer having a renewable raw material, wherein the inner housing part (2) has at least one layer having a material having a temperature resistance of at least up to 150° C.
Abstract:
Controlling a metallurgical plant, the plant has at least one plant part (1) operated with first and second operating parameters (BP 1, BP2) at a particular time, and an operating result (BE) is established on the basis of the operation of the plant part (1) according to the first and second operating parameters (BP1, BP2). The operating result (BE) is recorded. At least the operating result (BE) is transmitted from a control device (5) of the first plant part (1) to a computing unit (9). The computing unit (9) varies the second operating parameters (BP2), but not the first operating parameters (BP1), and thereby determines varied second operating parameters (BP2′) associated with the first operating parameters (BP 1). The computing unit (9) transmits the varied second operating parameters (BP2′) back to the control device (5) of the first plant part (1). The control device (5) of the first plant part (1) uses the varied second operating parameters (BP2′), after the transmission of the varied second operating parameters (BP2′), when the first operating parameters (BP1) are established.
Abstract:
A metallurgical container (1) includes an outer wall (2), at least one connection element (4) for an electrode which is to be connected and/or a support element which is to be connected, and at least one transponder (3) which is surrounded by a protective housing (6) and can be read wirelessly. The transponder (3) is at a distance from the outer wall (2) on the container (1).
Abstract:
A method for operating a filter system (1) for filtering an exhaust gas (11) of a metallurgical plant (12), which exhaust gas (11) comprises solid particles (10), wherein the filter system (1) has at least one electrode pair (2), to each of which an electrical power and/or an electrical voltage and/or an electrical current can be applied. A system for operating such a filter system includes (1) a plant for filtering an exhaust gas (11) of a metallurgical plant (12). The exhaust gas (11) includes solid particles (10). The metallurgical plant (12) includes such a filter system (1). In order to filter an exhaust gas (11) of a metallurgical plant (12), which exhaust gas (11) comprises solid particles (10), in a resource-saving manner, method steps include: identifying a process phase (7) of the metallurgical plant (12), identifying a feed-forward (8) of the respective electrode pair (2) dependent on the identified process phase (7), wherein the identified feed-forward (8) includes an electrical power and/or an electrical voltage and/or an electrical current to be applied, applying to the respective electrode pair (2) according to the identified feed-forward (8).