Abstract:
A method for detecting a cleaning process in a plant having filters (1, 31) arranged spatially offset from one another, wherein a first gas (21) having solid particles (20) is conducted in a first flow direction (10) filtered by a respective filter (1, 31). To clean the respective filter (1, 31), a second gas (22) is conducted through the filter (1, 31) opposite the first flow direction (10). Then listen to noise produced in the filtering or other physical phenomena to determine a condition of the filter including if it is being cleaned. To detect a cleaning process in a plant, a respective noise (12) is detected by acoustic sensors (2, 32, 2′, 32′, 42) arranged spatially offset from one another during the cleaning of the respective filter (1, 31). Further disclosed are a system for detecting a cleaning process in a plant having such filters, and such a plant.
Abstract:
An electronics protection housing which reliably protects electronics (1) therein from heat or hot liquids has an inner housing part (2) at least partially enclosing the electronics (1) and at least one outer housing part (3) at least partially enclosing the inner housing part (2) and which can be fastened on the inner housing part (2) by a mechanically removable connection, wherein the at least one outer housing part (3) has at least one layer having a renewable raw material, wherein the inner housing part (2) has at least one layer having a material having a temperature resistance of at least up to 150° C.
Abstract:
A production planning system (6) for a raw materials industry plant (ANL), which determines the production planning data (Pi) thereof and specifies said data to the automation system (1) of the plant (ANL). A state monitoring system (7) determines previous and future anticipated states (Z1) of components of the plant (ANL). A quality determination system (8) determines states (Z2) of output products (Ai) produced and still to be produced by the plant (ANL) and/or past and future states (Z3) of the plant (ANL) as a whole. A maintenance planning system (9) and/or the production planning system (6) receive, from the state monitoring system (7), the states (Z1) of the components of the plant (ANL), determined by the state monitoring system (7) and, from the quality determination system (8), the states (Z2 and Z3) of the output products (Ai) and/or of the plant (ANL) as a whole, determined by the quality determination system (8). They consider the data received from the state monitoring system (7) and from the quality determination system (8) in the determination of maintenance planning data (W) and/or the production planning data (Pi).
Abstract:
Controlling a metallurgical plant, the plant has at least one plant part (1) operated with first and second operating parameters (BP 1, BP2) at a particular time, and an operating result (BE) is established on the basis of the operation of the plant part (1) according to the first and second operating parameters (BP1, BP2). The operating result (BE) is recorded. At least the operating result (BE) is transmitted from a control device (5) of the first plant part (1) to a computing unit (9). The computing unit (9) varies the second operating parameters (BP2), but not the first operating parameters (BP1), and thereby determines varied second operating parameters (BP2′) associated with the first operating parameters (BP 1). The computing unit (9) transmits the varied second operating parameters (BP2′) back to the control device (5) of the first plant part (1). The control device (5) of the first plant part (1) uses the varied second operating parameters (BP2′), after the transmission of the varied second operating parameters (BP2′), when the first operating parameters (BP1) are established.
Abstract:
A metallurgical container (1) includes an outer wall (2), at least one connection element (4) for an electrode which is to be connected and/or a support element which is to be connected, and at least one transponder (3) which is surrounded by a protective housing (6) and can be read wirelessly. The transponder (3) is at a distance from the outer wall (2) on the container (1).
Abstract:
A method for operating a filter system (1) for filtering an exhaust gas (11) of a metallurgical plant (12), which exhaust gas (11) comprises solid particles (10), wherein the filter system (1) has at least one electrode pair (2), to each of which an electrical power and/or an electrical voltage and/or an electrical current can be applied. A system for operating such a filter system includes (1) a plant for filtering an exhaust gas (11) of a metallurgical plant (12). The exhaust gas (11) includes solid particles (10). The metallurgical plant (12) includes such a filter system (1). In order to filter an exhaust gas (11) of a metallurgical plant (12), which exhaust gas (11) comprises solid particles (10), in a resource-saving manner, method steps include: identifying a process phase (7) of the metallurgical plant (12), identifying a feed-forward (8) of the respective electrode pair (2) dependent on the identified process phase (7), wherein the identified feed-forward (8) includes an electrical power and/or an electrical voltage and/or an electrical current to be applied, applying to the respective electrode pair (2) according to the identified feed-forward (8).