HIGH FRAME-RATE MULTICHANNEL BEAM-SCANNING MICROSCOPY
    1.
    发明申请
    HIGH FRAME-RATE MULTICHANNEL BEAM-SCANNING MICROSCOPY 有权
    高帧率多通道光束扫描显微镜

    公开(公告)号:US20160004060A1

    公开(公告)日:2016-01-07

    申请号:US14735959

    申请日:2015-06-10

    CPC classification number: G02B21/0084 G02B21/0048 G02B21/0076 G02B26/101

    Abstract: A beam-scanning optical design is described for achieving up to kHz frame-rate optical imaging on multiple simultaneous data acquisition channels. In one embodiment, two fast-scan resonant mirrors direct the optical beam on a circuitous trajectory through the field of view, with the trajectory repeat-time given by the least common multiplier of the mirror periods. Dicing the raw time-domain data into sub-trajectories combined with model-based image reconstruction (MBIR) 3D in-painting algorithms allows for effective frame-rates much higher than the repeat time of the Lissajous trajectory. Because sub-trajectory and full-trajectory imaging are different methods of analyzing the same data, both high-frame rate images with relatively low resolution and low frame rate images with high resolution are simultaneously acquired.

    Abstract translation: 描述了用于在多个同时数据采集通道上实现高达kHz帧频光学成像的波束扫描光学设计。 在一个实施例中,两个快速扫描谐振反射镜将光束引导通过视场的迂回轨迹,轨迹重复时间由反射镜周期的最小公倍数给出。 将原始时域数据划分为与基于模型的图像重建(MBIR)相结合的子轨迹。3D绘图算法允许比Lissajous轨迹的重复时间高得多的有效帧速率。 因为子轨迹和全轨迹成像是分析相同数据的不同方法,同时获取具有较低分辨率的高帧率图像和高分辨率的低帧率图像。

    High frame-rate multichannel beam-scanning microscopy

    公开(公告)号:US10409047B2

    公开(公告)日:2019-09-10

    申请号:US15724738

    申请日:2017-10-04

    Abstract: A beam-scanning optical design is described for achieving up to kHz frame-rate optical imaging on multiple simultaneous data acquisition channels. In one embodiment, two fast-scan resonant mirrors direct the optical beam on a circuitous trajectory through the field of view, with the trajectory repeat-time given by the least common multiplier of the mirror periods. Dicing the raw time-domain data into sub-trajectories combined with model-based image reconstruction (MBIR) 3D in-painting algorithms allows for effective frame-rates much higher than the repeat time of the Lissajous trajectory. Because sub-trajectory and full-trajectory imaging are different methods of analyzing the same data, both high-frame rate images with relatively low resolution and low frame rate images with high resolution are simultaneously acquired.

Patent Agency Ranking