Abstract:
An apparatus for recording and displaying images of and identifying material types in a target object in a fluid carrying conduit includes a downhole unit. The downhole unit includes a controllable light source, the controllable light source structured to emit high energy photons. The downhole unit further includes a sensor unit structured to detect the high energy photons that are backscattered from the target object and to generate signals in response to the detected high energy photons. The apparatus also includes a control and display unit that includes a signal transmitter and a viewing screen structured to display at least one two-dimensional image that is generated using the signals from the sensor unit.
Abstract:
An apparatus for recording and displaying images of and identifying material types in a target object in a fluid carrying conduit includes a downhole unit. The downhole unit includes a controllable light source, the controllable light source structured to emit high energy photons. The downhole unit further includes a sensor unit structured to detect the high energy photons that are backscattered from the target object and to generate signals in response to the detected high energy photons. The apparatus also includes a control and display unit that includes a signal transmitter and a viewing screen structured to display at least one two-dimensional image that is generated using the signals from the sensor unit.
Abstract:
A detection apparatus (D) for photons or ionizing particles (P) is described, in which a detector system (11) is provided with several detecting units (11a), each including a scintillator (112) connected to a reader surface (111a) on an electronic charge reader (111), the scintillator (112) being arranged to generate cellular charges on the reader surface (111a) when capturing the photons or the ionizing particles (P), there being a collimator (113) arranged, connected to the scintillator (112) opposite the electronic charge reader (111), the collimator (113) being arranged to capture photons or ionizing particles (P′) exhibiting a direction of motion coinciding with a longitudinal axis (A) of the collimator (113), and to reject photons or ionizing particles (P′) exhibiting a direction of motion deviating from the direction of the longitudinal axis (A) of the collimator (113).
Abstract:
A method for downhole generation of non-radioactive, ionised radiation arranged so as to be able to generate reverberation, particularly X-ray- and/or gamma radiation, from the surroundings of a borehole, wherein the method comprises the steps of: exciting laser light in a multistage laser light booster by means of a pump-type laser light source so as to form a pulsed laser light, the incoming light energy being concentrated in restricted laser light pulses representing a higher amount of light energy than that of the continuous flux of laser light; forming a concentration of dissociated electrons in a vacuum chamber; focusing the pulsed laser light at a point in the concentration of dissociated electrons so as to form a field (wakefield) of pulsed electrons which, upon generation of Bremsstrahlung, emit ionised radiation to the surroundings, thereby forming a high-energy reverberation in the gamma- and/or X-ray frequency range from the surroundings. An apparatus for use when practising the method.
Abstract:
An apparatus for recording and displaying images of and identifying material types in a target object in a fluid carrying conduit includes a downhole unit. The downhole unit includes a controllable light source, the controllable light source structured to emit high energy photons. The downhole unit further includes a sensor unit structured to detect the high energy photons that are backscattered from the target object and to generate signals in response to the detected high energy photons. The apparatus also includes a control and display unit that includes a signal transmitter and a viewing screen structured to display at least one two-dimensional image that is generated using the signals from the sensor unit.
Abstract:
A method for downhole generation of non-radioactive neutron radiation arranged so as to be able to generate reverberation, particularly gamma radiation, from the surroundings of a borehole, the method comprising the steps of:exciting laser light in a multistage laser light booster by means of a pump-type laser light source so as to form a pulsed laser light, the incoming light energy being concentrated in restricted laser light pulses representing a higher amount of light energy than that of the continuous flux of laser light;forming a drop of a neutron-enriched fluid within a space in a vacuum chamber;focusing the pulsed secondary laser light rays, which are directed toward the drop from substantially diametrically opposite directions, at a point in the drop, the drop consequently being compressed and heated so as to cause the neutron-enriched fluid in the drop to emit neutron radiation to the surroundings,thereby forming a high-energy reverberation, at least in the gamma frequency range, from the surroundings.An apparatus for use when practising the method.
Abstract:
Apparatus for the controllable downhole production of ionizing radiation (12), the apparatus including at least a thermionic emitter (11) which is arranged in a first end portion (7a) of an electrically insulated vacuum container (9), and a lepton target (6) which is arranged in a second end portion (7b) of the electrically insulated vacuum container (9); the thermionic emitter (11) being connected to a series of serially connected negative electrical-potential-increasing elements (141, 142, 143, 144), each of said electrical-potential-increasing elements (141, 142, 143, 144) being arranged to increase an applied direct-current potential (δV0, δV1, δV1+2, . . . , δV1+2+3) by transforming an applied, driving voltage (VAC), and to transmit the increased, negative direct-current potential (δV1, δV1+2, . . . , δV1+2+3+4) and also the driving voltage (VAC) to the next unit in the series of serially connected elements (141, 142, 143, 144,5), and the ionizing radiation (12) exceeding 200 keV with a predominant portion of the spectral distribution within the Compton range.
Abstract:
A detection apparatus (D) for photons or ionizing particles (P) is described, in which a detector system (11) is provided with several detecting units (11a), each including a scintillator (112) connected to a reader surface (111a) on an electronic charge reader (111), the scintillator (112) being arranged to generate cellular charges on the reader surface (111a) when capturing the photons or the ionizing particles (P), there being a collimator (113) arranged, connected to the scintillator (112) opposite the electronic charge reader (111), the collimator (113) being arranged to capture photons or ionizing particles (P′) exhibiting a direction of motion coinciding with a longitudinal axis (A) of the collimator (113), and to reject photons or ionizing particles (P′) exhibiting a direction of motion deviating from the direction of the longitudinal axis (A) of the collimator (113).
Abstract:
Apparatus for the controllable downhole production of ionizing radiation (12), the apparatus including at least a thermionic emitter (11) which is arranged in a first end portion (7a) of an electrically insulated vacuum container (9), and a lepton target (6) which is arranged in a second end portion (7b) of the electrically insulated vacuum container (9); the thermionic emitter (11) being connected to a series of serially connected negative electrical-potential-increasing elements (141, 142, 143, 144), each of said electrical-potential-increasing elements (141, 142, 143, 144) being arranged to increase an applied direct-current potential (δV0, δV1, δV1+2, . . . , δV1+2+3) by transforming an applied, driving voltage (VAC), and to transmit the increased, negative direct-current potential (δV1, δV1+2, . . . , δV1+2+3+4) and also the driving voltage (VAC) to the next unit in the series of serially connected elements (141, 142, 143, 144, 5), and the ionizing radiation (12) exceeding 200 keV with a predominant portion of the spectral distribution within the Compton range.
Abstract:
A method and apparatus for downhole generation of non-radioactive, ionized radiation arranged so as to be able to generate reverberation, particularly X-ray and/or gamma radiation, from the surroundings of a borehole, wherein the method includes the steps of: exciting laser light in a multistage laser light booster by means of a pump-type laser light source so as to form a pulsed laser light, the incoming light energy being concentrated in restricted laser light pulses representing a higher amount of light energy than that of a continuous flux of laser light; forming a concentration of dissociated electrons in a vacuum chamber; focusing the pulsed laser light at a point in the concentration of dissociated electrons so as to form a field (wakefield) of pulsed electrons which, upon generation of Bremsstrahlung, emit ionized radiation to the surroundings, thereby forming a high-energy reverberation in the gamma and/or X-ray frequency range from the surroundings.