Abstract:
A piston assembly with a transversely removable suction cup, the piston assembly having a piston rod, a flange at an end of the piston rod, and a suction cup removably secured to the end of the piston rod. The piston rod has a longitudinal axis defining a longitudinal direction and a transverse direction that is substantially perpendicular to the longitudinal direction. The flange has a width in the transverse direction that is greater than a width of the piston rod in the transverse direction. The suction cup includes a receptacle configured to accept and secure the flange within the receptacle. The receptacle has an opening allowing the flange to be accepted into the receptacle in the transverse direction and to be removed from the receptacle in the transverse direction.
Abstract:
An active backboard that can assist with adjusting a patient on the backboard to ensure that the backboard is correctly aligned for a compression mechanism of an upper portion of a mechanical cardiopulmonary resuscitation (CPR) device to perform compressions. The active backboard can also include multiple layers that can slide or move relative to each other to move the patient relative to the backboard. The active backboard can include roller bars, a wheel, and/or projections to assist with moving a patient relative to the backboard.
Abstract:
Examples of the disclosure are directed to adjustable back plates or backboards for a mechanical compression device to accommodate different patient sizes and/or for ease of storage. Examples of the disclosure includes back plates that can be folded, pieced together, or otherwise have a variable distance between connectors that attach to legs of a chest compression device. Examples also include back plates which may have two sides, such as an adult patient side and a pediatric patient side, to accommodate different patient sizes.
Abstract:
A cardiopulmonary resuscitation (“CPR”) device comprising a chest compression mechanism, a support structure, and a plurality of inflatable support pads. The chest compression is mechanism configured to deliver CPR chest compressions to a patient. The support structure comprises a base member configured to be placed underneath a patient, and a leg configured to support the chest compression mechanism at a distance from the base member. The plurality of inflatable support pads are disposed at a junction between the leg and the base member. The plurality of inflatable support pads are configured to provide lateral support to a patient's chest during use of the CPR device.
Abstract:
A CPR machine (100) is configured to perform compressions on a patient's (182) chest that alternate with releases. The CPR machine includes a compression mechanism (148), and a driver system (141) configured to drive the compression mechanism. A compression force may be sensed, and the driving is adjusted accordingly if there is a surprise. For instance, driving may have been automatic according to a motion-time profile, which is adjusted if the compression force is not as expected (850). An optional chest-lifting device (152) may lift the chest between the compressions, to assist actively the decompression of the chest. A lifting force may be sensed, and the motion-time profile can be adjusted if the compression force or the lifting force is not as expected. An advantage is that a changing condition in the patient or in the retention of the patient within the CPR machine may be detected and responded to.
Abstract:
Embodiments of a Cardio-Pulmonary Resuscitation (“CPR”) device are disclosed. A CPR device can include a compression mechanism configured to perform successive CPR compressions on a chest of a patient, the compression mechanism including a support portion configured to be placed underneath a patient, a piston, and a contact surface configured to make contact with the chest at a first orientation with respect to the support portion; and a controller communicatively coupled with the compression mechanism. The controller can be configured to receive at least one input and determine whether the first orientation of the contact surface should be adjusted based on the at least one input. The controller can further, responsive to a determination that the first orientation of the contact surface should be adjusted, cause the contact surface to move so that the contact surface makes contact with the chest at a second orientation with respect to the support portion.
Abstract:
Embodiments of a Cardio-Pulmonary Resuscitation (“CPR”) device are disclosed. A CPR device can include a compression mechanism configured to perform successive CPR compressions on a chest of a patient, the compression mechanism including a support portion configured to be placed underneath a patient, a piston, and a contact surface configured to make contact with the chest at a first orientation with respect to the support portion; and a controller communicatively coupled with the compression mechanism. The controller can be configured to receive at least one input and determine whether the first orientation of the contact surface should be adjusted based on the at least one input. The controller can further, responsive to a determination that the first orientation of the contact surface should be adjusted, cause the contact surface to move so that the contact surface makes contact with the chest at a second orientation with respect to the support portion.
Abstract:
Techniques and devices for extending a piston, for example connected to a medical device such as a mechanical CPR device, to accommodate different sized patients, are described herein. In some cases, a piston of a mechanical CPR device may include an inner piston at least partially slidable into an external piston sleeve. In one aspect, an external piston spacer may be attached to an outward surface of the inner piston to extend the length of the piston. In another aspect an internal bayonet sleeve may contact one or more locking rods at various positions, enabling adjustment of the length of the inner piston. In yet another aspect, a piston adapter may be removably attached to the end of the piston. In all aspects, the change in length of the piston may be detected and used to modify movement of the piston, for example to more safely perform mechanical CPR.
Abstract:
A CPR machine (100) is configured to perform compressions on a patient's (182) chest that alternate with releases. The CPR machine includes a compression mechanism (148), and a driver system (141) configured to drive the compression mechanism. A compression force may be sensed, and the driving is adjusted accordingly if there is a surprise. For instance, driving may have been automatic according to a motion-time profile, which is adjusted if the compression force is not as expected (850). An optional chest-lifting device (152) may lift the chest between the compressions, to assist actively the decompression of the chest. A lifting force may be sensed, and the motion-time profile can be adjusted if the compression force or the lifting force is not as expected. An advantage is that a changing condition in the patient or in the retention of the patient within the CPR machine may be detected and responded to.
Abstract:
Techniques and devices for securing a medical device to a patient-carrying device, such as a mechanical CPR device to a stretcher, are described herein. In one aspect, a medical device stabilization strap may include a first removable attachment shackle connected to a first end of a first strap. An adjustable quick release buckle may be disposed between a second end of the first strap and a proximal end of a second strap. A second removable attachment shackle may be connected to a distal end of the second strap. The first and second removable attachment shackles may each include a U-shaped bracket for removably engaging a medical device. The adjustable quick release buckle may adjust a length of the second strap, for example, to secure the medical device to the patient-carrying device.