Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may adjust a basic safety message generation periodicity based at least in part on a semi-persistent scheduling periodicity for transmitting basic safety messages. The UE may generate one or more basic safety messages based at least in part on the adjusted basic safety message generation periodicity. Numerous other aspects are provided.
Abstract:
A method, apparatus, and computer-readable medium at a transmitting user equipment (UE) in a distributed cellular vehicle-to-everything environment are disclosed to determine a schedule for transmissions on subchannels of multiple frequencies based on a set of UE-specific, dynamic, and performance related metrics or criteria. The metrics may include an estimated number of users on a subchannel, a best-bandwidth fit, channel loading conditions, transmission range, and quality requirements of an application, among others. Such a schedule for transmissions on subchannels of multiple frequencies may result in either an improved capacity utilization, an improved communication quality, or both.
Abstract:
Examples described herein relate to managing communications for a first subscription and a second subscription of a wireless communication device, including, but not limited to, determining collision between activities of the first subscription over a first RAT and activities of the second subscription over a second RAT and reselecting from the second RAT to a third RAT for the second subscription.
Abstract:
Embodiments include methods implemented by a processor of a mobile communication device for managing tune-aways by a radio frequency resource supporting a first subscription to support a second subscription. The processor may determine a data loss ratio of the data of a media file that is lost in transmission to the mobile communication device. The processor may compare the data loss ratio of the data to a first data loss ratio threshold and a second data loss ratio threshold, and the processor may block a tune-away event of the radio frequency resource from the first subscription to the second subscription in response to determining that the data loss ratio of the data is greater than the first data loss ratio threshold and less than the second data loss ratio threshold.
Abstract:
In device-to-device (D2D) communication in a licensed spectrum, selection of a transmit pool and distribution of codes to be transmitted to the transmit pools for more efficient transmission is desired, for a given period. The apparatus may a user equipment (UE) for D2D communication in a licensed spectrum. The UE sets a discovery epoch to a shortest discovery period among discovery periods of a plurality of transmit resource pools, each transmit resource pool of the plurality of transmit resource pools associated with a respective frequency. The UE estimates a channel utilization of each transmit resource pool of the plurality of transmit resource pools based on one or more previous transmissions on each transmit resource pool of the plurality of transmit resource pools. The UE selects a transmit resource pool among the plurality of transmit resource pools for a D2D transmission within the discovery epoch based on the estimated channel utilizations.
Abstract:
Various aspects of the present disclosure for wireless communication may intelligently present a concurrent communication session to a user while the user's user equipment (UE) is streaming and/or presenting an original communication session. Example aspects may receive streaming communication content at a mobile device during an active communication session, present the streaming communication content at the mobile device, receive a concurrent service indication at the mobile device during the active communication session, and the concurrent service (or notification thereof) at the mobile device while concurrently streaming the communication content.
Abstract:
A method, an apparatus, and a non-transitory computer readable medium for receiving data and one or more redundant equivalent versions of the data from a remote user equipment (UE), buffering the data and the one or more redundant equivalent versions of the data, transmitting the data to a base station, receiving at least one negative acknowledgement, relating to the data, from the base station indicating an unsuccessful reception of the data; and transmitting, in response to receiving the at least one negative acknowledgement, at least one of the one or more redundant equivalent versions of the data to the base station.
Abstract:
Device-to-device operations are scheduled based on receive and transmit pools that may have a conflict in time domain. In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus for resolving time domain conflict in device-to-device communication are provided. The apparatus may compute a first block rate metric for a first device-to-device communication on a first frequency and a second block rate metric for a second device-to-device communication on a second frequency. The apparatus may detect a time-domain conflict between the first device-to-device communication on the first frequency and the second device-to-device communication on the second frequency. The apparatus may prioritize the first device-to-device communication on the first frequency and the second device-to-device communication on the second frequency based on the first block rate metric and the second block rate metric.
Abstract:
Certain aspects of the present disclosure provide techniques for defending against false semi-persistent scheduling (SPS) activation detection and/or missed SPS release. According to certain aspects, a user equipment (UE) may detect one or more conditions for a semi-persistent scheduling (SPS) activation or release are met based on a downlink transmission, generate one or more metrics related to downlink transmission, and determine a valid SPS activation or release has occurred if the one or more metrics satisfy one or more criteria. According to certain aspects, a UE may determine a valid semi-persistent scheduling (SPS) activation has occurred, detect a number of PDSCH CRC failures, and implicitly declare an SPS release based on the detection.
Abstract:
Certain aspects of the present disclosure relate to techniques and apparatus for a user equipment (UE) to delay RLC retransmissions (e.g., during off-durations, including CDRX off-durations). According to aspects of the present disclosure, a UE may delay triggering an RLC retransmission of an RLC PDU until after a next opportunity for the UE to receive an RLC ACK of the RLC PDU. By delaying RLC retransmissions, a UE may be prevented from waking up from one or more CDRX off-durations and using power associated with waking up from the one or more CDRX off-durations.