Abstract:
Electrically operated propellant is used to supplement the thrust provided by solid rocket motor (SRM) propellant to manage thrust produced by a SRM. The gas produced by burning the electrically operated propellant may be injected upstream of the nozzle to add mass and increase chamber pressure Pc, injected at the throat of the nozzle to reduce the effect throat area At to increase chamber pressure Pc or injected downstream of the throat to provide thrust vector control or a combination thereof. Certain types of electrically operated propellants can be turned on and off provided the chamber pressure Pc does not exceed a self-sustaining threshold pressure eliminating the requirement for physical control valves.
Abstract:
Electrical ignition of electrically operated propellant in a gas generation system provides an ignition condition at an ignition surface between a pair of electrodes that satisfies three criteria of a current density J that exhibits a decreasing gradient along an axis normal to an ignition surface, is substantially constant across the ignition surface and exceeds an ignition threshold at the ignition surface. These criteria may be satisfied by one or more of an angled electrode configuration, a segmented electrode configuration or an additive to the electrically operated propellant that modifies its conductivity. These configurations improve burn rate control and consumption of the available propellant and are scalable to greater propellant mass to support larger gas generation systems.
Abstract:
A device is provided. The device includes at least one SMM component fabricated from an SMM. The SMM component is configured to change shape in response to receiving a stimulus. The SMM component is also configured to deploy from a device body of the device allowing the device to change shape in an advantageous way. A method implemented by a device is also provided. The method includes changing a shape of an SMM component of the device in response to receiving a stimulus. The SMM component is fabricated from an SMM. The method also includes deploying the SMM component from a device body of the device allowing the device to change shape in an advantageous way.
Abstract:
A method includes receiving, using a first graphical user interface, information associated with a request for proposal, quote, bid, or information (RFX) to be generated and provided to a supplier. The method also includes identifying one of multiple acquisition scenarios associated with the RFX to be generated based on the received information. The method further includes generating the RFX based on the received information and the identified acquisition scenario. The method also includes receiving, using a second graphical user interface, an RFX response from the supplier. The method further includes identifying multiple requirements associated with the RFX response based on the identified acquisition scenario and comparing contents of the RFX response to the identified requirements. In addition, the method includes automatically informing the supplier of one or more identified requirements for which the RFX response is non-compliant.
Abstract:
A device is provided. The device includes at least one SMM component fabricated from an SMM. The SMM component is configured to change shape in response to receiving a stimulus. The SMM component is also configured to deploy from a device body of the device allowing the device to change shape in an advantageous way. A method implemented by a device is also provided. The method includes changing a shape of an SMM component of the device in response to receiving a stimulus. The SMM component is fabricated from an SMM. The method also includes deploying the SMM component from a device body of the device allowing the device to change shape in an advantageous way.
Abstract:
A satellite has thrusters that are integral parts of its frame. The frame defines cavities therein where thrusters are located. The thrusters may include an electrically-operated propellant and electrodes to activate combustion in the electrically-operated propellant. The frame may be additively manufactured, and the propellant and/or the electrodes may also be additively manufactured, with the frame and the propellant and/or the electrodes also being manufactured in a single process. In addition the thrusters may have nozzle portions through which combustion gases exit the thrusters. The thrusters may be located at corners and/or along edges of the frame, and may be used to accomplish any of a variety of maneuvers for the satellite. The satellite may be a small satellite, such as a CubeSat satellite, for instance having a volume of about 1 liter, and a mass of no more than about 1.33 kg.
Abstract:
The rate of combustion of an electrically operated propellant having self-sustaining threshold of at least 1,000 psi is controlled to produce chamber pressures that are sufficient to produce a desired pressure profile in the airbag to accommodate a range of human factors and crash conditions yet never exceeding the self-sustaining threshold. The combustion of the propellant is extinguished to control the total pressure impulse delivered to the airbag. Propellants formed with an ionic perchlorate-based oxidizer have demonstrated thresholds in excess of 1,500 psi and higher.
Abstract:
A method includes performing, using at least one processor, multiple price analyses associated with a proposal. The method also includes generating a visualization that overlays results of the multiple price analyses in a common graph, where different ones of the price analyses are associated with different data points in the graph. The method further includes receiving a user selection of one or more of the data points in the visualization to be excluded. The method also includes repeating, using the at least one processor, the multiple price analyses without using the one or more excluded data points. In addition, the method includes updating the visualization based on results of the repeated price analyses.
Abstract:
A thruster includes multiple segments of electrically-operated propellant, electrodes for igniting one or a few of the electrically-operated propellant segments at a time, and a propellant feeder for moving further propellant segments into engagement with the electrodes. The segments may be configured to provide equal increments of thrust, or different amounts of thrust. The segments may each include an electrically-operated propellant material surrounded by a sealing material, so as to keep the propellant material away from moisture and other contaminants (and/or the vacuum of space) before each individual segment is to be used. The thruster may be included in any of a variety of flight vehicles, for example in a small satellite such as a CubeSat satellite, for instance having a volume of about 1 liter, and a mass of no more than about 1.33 kg.
Abstract:
An apparatus includes a slotted multi-nozzle grid with a plate having multiple elongated slotlettes through the plate. Each of at least some of the slotlettes has a convergent input, a divergent output, and a narrower throat portion separating the convergent input and the divergent output. At least some of the slotlettes are arranged in multiple rows. The plate further includes multiple cooling channels through the plate. At least some of the cooling channels are located between the rows of slotlettes. Each cooling channel is configured to transport coolant through the plate in order to cool the plate, such as to cool the plate as hot combustion gases pass through the plate. Each of at least some of the rows may include at least two slotlettes, and two adjacent slotlettes in one row may be separated by a structural ligament (which may have a tear-drop cross-sectional shape).