Abstract:
A system includes one or more lasers, a collimator, and a controller. The one or more lasers are configured to generate laser illumination. The collimator is configured to adjust at least one of a degree of collimation, a divergence, and an intensity of the laser illumination and to direct the laser illumination towards one or more targets. The controller is configured to control the one or more lasers and the collimator in order to adjust the laser illumination directed at the one or more targets, and the controller is configured to control the one or more lasers and the collimator differently in different operating modes. Example operating modes could include a spotlight mode, a single-color dazzler or pulsating mode, a multi-color dazzler or pulsating mode, a communication mode, and an infrared-based operation mode.
Abstract:
According to one aspect, a sparse optical system is provided. The sparse optical system includes optical segments, an optical source module to generate beams of light, a collimating module to direct the beams of light towards two adjacent optical segments, a detector to receive a reflection of the beams of light from the optical segments, and a processor. The processor instructs the optical source module to generate a first beam of light, determines a first measurement of an alignment of the two adjacent segments based on the reflection of the first beam, adjusts a position of an optical segment based on the first measurement, instructs the optical source module to generate a second beam of light, and determines a second measurement of the alignment of the two segments based on the reflection of the second beam.
Abstract:
A method for configuring an alignment of a plurality of optical segments in a sparse aperture configuration of an optical device includes providing at least one beam of light from at least one light source located on the sparse aperture optical device, directing the at least one beam of light toward at least one segment of the plurality of optical segments, detecting a reflection or transmission of the at least one beam of light off of the at least one segment of the plurality of optical segments, determining a characteristic of the reflected or transmitted light, and based on the characteristic of the reflected or transmitted light, determining an alignment of the at least one segment of the plurality of optical segments.
Abstract:
A dual-mode active and passive gimbaled optical system including a mechanism for coupling an optical signal from an off-gimbal active-mode source into the on-gimbal passive-mode optical path. One example of the system includes a passive off-gimbal detector assembly configured to image emissive electromagnetic radiation from a viewed scene, and a receiver-path optical assembly, including on-gimbal objective optics, that directs the electromagnetic radiation to the off-gimbal detector assembly. The system further includes an off-gimbal active source that generates an optical signal, a gimbal bearing assembly that supports rotation of the gimbal and includes a centrally-located output ferrule mated to an optical fiber that transports the optical signal from the active source to the output ferrule, and an on-gimbal optical coupling element that receives the optical signal from the output ferrule and couples the optical signal into the receiver optical path to direct the optical signal toward the on-gimbal objective optics.
Abstract:
According to one aspect, a sparse optical system is provided. The sparse optical system includes optical segments, an optical source module to generate beams of light, a collimating module to direct the beams of light towards two adjacent optical segments, a detector to receive a reflection of the beams of light from the optical segments, and a processor. The processor instructs the optical source module to generate a first beam of light, determines a first measurement of an alignment of the two adjacent segments based on the reflection of the first beam, adjusts a position of an optical segment based on the first measurement, instructs the optical source module to generate a second beam of light, and determines a second measurement of the alignment of the two segments based on the reflection of the second beam.
Abstract:
A method for configuring an alignment of a plurality of optical segments in a sparse aperture configuration of an optical device includes providing at least one beam of light from at least one light source located on the sparse aperture optical device, directing the at least one beam of light toward at least one segment of the plurality of optical segments, detecting a reflection or transmission of the at least one beam of light off of the at least one segment of the plurality of optical segments, determining a characteristic of the reflected or transmitted light, and based on the characteristic of the reflected or transmitted light, determining an alignment of the at least one segment of the plurality of optical segments.
Abstract:
A system includes one or more lasers, a collimator, and a controller. The one or more lasers are configured to generate laser illumination. The collimator is configured to adjust at least one of a degree of collimation, a divergence, and an intensity of the laser illumination and to direct the laser illumination towards one or more targets. The controller is configured to control the one or more lasers and the collimator in order to adjust the laser illumination directed at the one or more targets, and the controller is configured to control the one or more lasers and the collimator differently in different operating modes. Example operating modes could include a spotlight mode, a single-color dazzler or pulsating mode, a multi-color dazzler or pulsating mode, a communication mode, and an infrared-based operation mode.
Abstract:
A gun-launched ballistically-stable spinning laser-guided munition is backward compatible with existing guns with rifled barrels as-deployed for unguided munitions of the same caliber, and will follow the same ballistic trajectory. This allows the laser-guided munitions to be used with the existing base of weapons systems and logistics. The munition comprises a plurality of explosive divert elements arranged around the bullet to produce a force vector through the center of mass (Cm) of the bullet, a SAL guidance system configured to measure a sequence of roll and nod angle pairs (or their equivalent) to the target, a processor configured to process the roll and nod angles to compute a firing solution for one or more of the divert elements to produce a force vector to laterally displace the bullet to drive the nod angle to a prescribed value and a fire controller configured, once its operational mode is initiated, to fire the one or more explosive divert elements according to the firing solution to laterally displace the bullet without affecting the bullet's angle of attack and destabilizing the bullet.
Abstract:
A multimode radiation source is disclosed. One embodiment includes a waveguide radiator and an orthomode transducer coupled to the waveguide radiator to provide a first signal to the waveguide radiator. The waveguide radiator is configured to receive the first signal and to radiate the first signal at a first location as a first spherical wave signal with a first phase center. The multimode source also includes transmission medium coupled to the waveguide radiator and configured to radiate a second signal and a third signal from the first location as a second spherical wave and a third spherical wave with substantially the first phase center.
Abstract:
A dual-mode active and passive gimbaled optical system including a mechanism for coupling an optical signal from an off-gimbal active-mode source into the on-gimbal passive-mode optical path. One example of the system includes a passive off-gimbal detector assembly configured to image emissive electromagnetic radiation from a viewed scene, and a receiver-path optical assembly, including on-gimbal objective optics, that directs the electromagnetic radiation to the off-gimbal detector assembly. The system further includes an off-gimbal active source that generates an optical signal, a gimbal bearing assembly that supports rotation of the gimbal and includes a centrally-located output ferrule mated to an optical fiber that transports the optical signal from the active source to the output ferrule, and an on-gimbal optical coupling element that receives the optical signal from the output ferrule and couples the optical signal into the receiver optical path to direct the optical signal toward the on-gimbal objective optics.