Abstract:
The current document is directed to various types of oscillating resonant modules (“ORMs”), including linear-resonant vibration modules, that can be incorporated in a wide variety of appliances, devices, and systems to provide vibrational forces. The vibrational forces are produced by back-and-forth oscillation of a weight or member along a path, generally a segment of a space curve. A controller controls each of one or more ORMs to produce driving oscillations according to a control curve or control pattern for the ORM that specifies the frequency of the driving oscillations with respect to time. The driving oscillations, in turn, elicit a desired vibration response in the device, appliance, or system in which the one or more ORMs are included. The desired vibration response is achieved by selecting and scaling control patterns in view of known resonance frequencies of the device, appliance, or system.
Abstract:
The current application is directed to various types of linear vibrational modules, including linear-resonant vibration modules that can be incorporated in a wide variety of appliances, devices, and systems to provide vibrational forces. The vibrational forces are produced by linear oscillation of a weight or member, in turn produced by rapidly alternating the polarity of one or more driving electromagnets. Feedback control is used to maintain the vibrational frequency of linear-resonant vibration module at or near the resonant frequency for the linear-resonant vibration module. Both linear vibration modules and linear-resonant vibration modules can be designed to produce vibrational amplitude/frequency combinations throughout a large region of amplitude/frequency space.
Abstract:
The present document discloses motors and motor components that are constructed on a planar substrate. In some implementations, the planar substrate is made from rigid or semi-rigid sheet material, such as a printed circuit board (“PCB”). One or more coils are formed using spiral-shaped conductive traces that overlay the front and/or back surfaces of the substrate. In one implementation, a plurality of alternating right-hand and left-hand spiral-shaped conductive traces are separated by insulating layers, and connected with conductive vias to form inductive coils. Alternative coil-configurations include single-drive counter-wound coils and coils having a central ferrous or magnetic core.
Abstract:
The current document is directed to various types of oscillating resonant modules (“ORMs”), including linear-resonant vibration modules, that can be incorporated in a wide variety of appliances, devices, and systems to provide vibrational forces. The vibrational forces are produced by back-and-forth oscillation of a weight or member along a path, generally a segment of a space curve. A controller controls each of one or more ORMs to produce driving oscillations according a control curve or control pattern for the ORM that specifies the frequency of the driving oscillations with respect to time. The driving oscillations, in turn, elicit a desired vibration response in the device, appliance, or system in which the one or more ORMs are included. The desired vibration response is achieved by selecting and scaling control patterns in view of known resonance frequencies of the device, appliance, or system.
Abstract:
The current document is directed to non-linear haptic actuators that use a rotor, rotor-suspension, and spring subsystem to efficiently generate vibrational forces in various types of devices and appliances in which the non-linear haptic actuators are incorporated. Non-linear haptic actuators can be designed and manufactured to be more space efficient than unbalanced-electric-motor and linear-resonant vibration modules and, because most of the frictional forces produced in unbalanced-electric-motor and linear-resonant vibration modules are eliminated from non-linear haptic actuators, non-linear haptic actuators are generally more power efficient and robust than unbalanced-electric-motor and linear-resonant vibration modules.
Abstract:
The current document is directed to non-linear haptic actuators that use a rotor, rotor-suspension, and spring subsystem to efficiently generate vibrational forces in various types of devices and appliances in which the non-linear haptic actuators are incorporated. Non-linear haptic actuators can be designed and manufactured to be more space efficient than unbalanced-electric-motor and linear-resonant vibration modules and, because most of the frictional forces produced in unbalanced-electric-motor and linear-resonant vibration modules are eliminated from non-linear haptic actuators, non-linear haptic actuators are generally more power efficient and robust than unbalanced-electric-motor and linear-resonant vibration modules.
Abstract:
The current application is directed to various types of linear vibrational modules, including linear-resonant vibration modules that can be incorporated in a wide variety of appliances, devices, and systems to provide vibrational forces. The vibrational forces are produced by linear oscillation of a weight or member, in turn produced by rapidly alternating the polarity of one or more driving electromagnets. Feedback control is used to maintain the vibrational frequency of linear-resonant vibration module at or near the resonant frequency for the linear-resonant vibration module. Both linear vibration modules and linear-resonant vibration modules can be designed to produce vibrational amplitude/frequency combinations throughout a large region of amplitude/frequency space.
Abstract:
The current document is directed to various types of oscillating resonant modules (“ORMs”), including linear-resonant vibration modules, that can be incorporated in a wide variety of appliances, devices, and systems to provide vibrational forces. The vibrational forces are produced by back-and-forth oscillation of a weight or member along a path, generally a segment of a space curve. A controller controls each of one or more ORMs to produce driving oscillations according to a control curve or control pattern for the ORM that specifies the frequency of the driving oscillations with respect to time. The driving oscillations, in turn, elicit a desired vibration response in the device, appliance, or system in which the one or more ORMs are included. The desired vibration response is achieved by selecting and scaling control patterns in view of known resonance frequencies of the device, appliance, or system.
Abstract:
The current document is directed to various types of oscillating resonant modules (“ORMs”), including linear-resonant vibration modules, that can be incorporated in a wide variety of appliances, devices, and systems to provide vibrational forces. The vibrational forces are produced ley back-and-forth oscillation of a weight or member along a path, generally a segment of a space curve. A controller controls each of one or more ORMs to produce driving oscillations according to a control curve or control pattern for the ORM that specifies the frequency of the driving oscillations with respect to time. The driving oscillations, in turn, elicit a desired vibration response in the device, appliance, or system in which the one or more ORMs are included. The desired vibration response is achieved by selecting and scaling control patterns in view of known resonance frequencies of the device, appliance, or system.
Abstract:
An actuator includes a housing, a moving element and two springs connected between the housing and the moving element such that one of the two springs crosses the other of the two rotor springs without contacting the other of the two springs. A drive component causes the moving element to move.