Abstract:
A glass wafer assembly is disclosed. In one aspect, the glass wafer assembly comprises a first glass wafer and a second glass wafer that are bonded by a conductive sealing ring. The conductive sealing ring defines a substantially hermetically sealed cavity between the first glass wafer and the second glass wafer. In another aspect, the first glass wafer and the second glass wafer each comprise a plurality of conductive through glass vias (TGVs). At least one active device is disposed in the substantially hermetically sealed cavity and can be electrically coupled to a conductive TGV in the first glass wafer and a conductive TGV in the second glass wafer to enable flexible electrical routing through the glass wafer assembly without wire bonding and over molding. As a result, it is possible to reduce footprint and height while improving radio frequency (RF) performance of the glass wafer assembly.
Abstract:
The disclosure is directed to optimized switching circuitry utilizing MEMS (Microelectromechanical Systems) circuitry in series with solid state circuitry. Specifically, the MEMS circuitry includes a first MEMS circuit in parallel with (and separate from) a second MEMS circuit. A paired signal is defined as a transmit signal and a receive signal (in a single band) that are transmitted or received on separate paths or on separate nodes. The transmit signal is associated with the first MEMS circuit, and the receive signal is associated with the second MEMS circuit. The solid state circuitry switches between the first MEMS circuit and second MEMS circuit without requiring any switching in the first or second MEMS circuits.
Abstract:
Encapsulated MEMS switches are disclosed along with methods of manufacturing the same. A first sacrificial layer is used to form the actuation member of the MEMS switch. A second sacrificial layer is used to form the enclosure that encapsulates the MEMS switch.
Abstract:
Encapsulated MEMS switches are disclosed along with methods of manufacturing the same. A first sacrificial layer is used to form the actuation member of the MEMS switch. A second sacrificial layer is used to form the enclosure that encapsulates the MEMS switch.
Abstract:
The present disclosure relates to radio frequency (RF) microelectromechanical system (MEMS) device packaging, and specifically to reducing harmonic distortion caused by such packaging. In one embodiment, a die is provided that employs a gold-doped silicon substrate, wherein at least one RF MEMS device is disposed on the gold-doped silicon substrate. By employing the gold-doped silicon substrate, the packaging can achieve an exceptionally high resistivity without any additional expensive components, wherein the high resistivity has an associated low carrier lifetime. Notably, the low carrier lifetime corresponds to reduced harmonic distortion generated by the gold-doped silicon substrate, even when operating at high power. Thus, the gold-doped silicon substrate provides a less expensive packaging in which to place RF MEMS devices, wherein the packaging is capable of operating at high power with reduced harmonic distortion.
Abstract:
This disclosure relates generally to radio frequency (RF) front-end circuitry for routing RF signals to and/or from one or more antennas. Exemplary RF front-end circuitry includes a multiple throw solid-state transistor switch (MTSTS) and a multiple throw microelectromechanical switch (MTMEMS). The MTSTS may be configured to selectively couple a first pole port to any one of a first set of throw ports. The MTMEMS is configured to selectively couple a second pole port to any one of a second set of throw ports. The second pole port of the MTMEMS is coupled to a first throw port in the first set of throw ports of the MTSTS. The MTSTS helps prevent hot switching in the MTMEMS since the first throw port of the MTSTS may be decoupled from the second pole port of the MTMEMS before decoupling the second pole port from a selectively coupled throw port of the MTMEMS.
Abstract:
A glass wafer assembly is disclosed. In one aspect, the glass wafer assembly comprises a first glass wafer and a second glass wafer that are bonded by a conductive sealing ring. The conductive sealing ring defines a substantially hermetically sealed cavity between the first glass wafer and the second glass wafer. In another aspect, the first glass wafer and the second glass wafer each comprise a plurality of conductive through glass vias (TGVs). At least one active device is disposed in the substantially hermetically sealed cavity and can be electrically coupled to a conductive TGV in the first glass wafer and a conductive TGV in the second glass wafer to enable flexible electrical routing through the glass wafer assembly without wire bonding and over molding. As a result, it is possible to reduce footprint and height while improving radio frequency (RF) performance of the glass wafer assembly.
Abstract:
The present disclosure relates to radio frequency (RF) microelectromechanical system (MEMS) device packaging, and specifically to reducing harmonic distortion caused by such packaging. In one embodiment, a die is provided that employs a gold-doped silicon substrate, wherein at least one RF MEMS device is disposed on the gold-doped silicon substrate. By employing the gold-doped silicon substrate, the packaging can achieve an exceptionally high resistivity without any additional expensive components, wherein the high resistivity has an associated low carrier lifetime. Notably, the low carrier lifetime corresponds to reduced harmonic distortion generated by the gold-doped silicon substrate, even when operating at high power. Thus, the gold-doped silicon substrate provides a less expensive packaging in which to place RF MEMS devices, wherein the packaging is capable of operating at high power with reduced harmonic distortion.