Abstract:
An apparatus for detecting labeled beads is provided. The apparatus can include: one or more irradiation sources disposed for irradiating the one or more detection zones with radiation; at least one detector disposed for collecting charges corresponding to light signals emitted from labeled beads in the one or more detection zones, which have been excited by the radiation; and a system coupled to the at least one detector for effecting time delay integration of the charges by accumulating the charges before reading the charges at the output of the at least one detector.
Abstract:
Various embodiments described in the application relate to an apparatus, system, and method for generating, within a conduit, discrete volumes of one or more fluids that are immiscible with a second fluid. The discrete volumes can be used for biochemical or molecular biology procedures involving small volumes, for example, microliter-sized volumes, nanoliter-sized volumes, or smaller. The system can comprise an apparatus comprising at least one conduit operatively connected to one or more pumps for providing discrete volumes separated from one another by a fluid that is immiscible with the fluid(s) of the discrete volumes, for example, aqueous immiscible-fluid-discrete volumes separated by an oil.
Abstract:
System and method for fluorescent light excitation and detection from samples to enhance the numerical aperture and/or reduce the cross-talk of the fluorescent light.
Abstract:
Various embodiments of the teachings relate to a system or method for sample preparation or analysis in biochemical or molecular biology procedures. The sample preparation can involve small volume processed in discrete portions or segments or slugs, herein referred to as discrete volumes. A molecular biology procedure can be nucleic acid analysis. Nucleic acid analysis can be an integrated DNA amplification/DNA sequencing procedure.
Abstract:
System and method for fluorescent light excitation and detection from samples to enhance the numerical aperture and/or reduce the cross-talk of the fluorescent light.
Abstract:
Various embodiments of the teachings relate to a system or method for sample preparation or analysis in biochemical or molecular biology procedures. The sample preparation can involve small volume processed in discrete portions or segments or slugs, herein referred to as discrete volumes. A molecular biology procedure can be nucleic acid analysis. Nucleic acid analysis can be an integrated DNA amplification/DNA sequencing procedure.
Abstract:
A method of selecting inks for use in imaging with an imaging apparatus includes establishing a high fidelity colorant cube having a plurality of vertex lines pertaining to a corresponding plurality of basic inks, and at least one other vertex line pertaining to at least one high fidelity ink; determining first mixing coordinates of the at least one high fidelity ink and the plurality of basic inks for face grids of the high fidelity colorant cube based on a maximum permitted ink amount; determining second mixing coordinates of the at least one high fidelity ink and the plurality of basic inks for interior grids of the high fidelity colorant cube based on the maximum permitted ink amount; and generating a color conversion lookup table based on the first mixing coordinates and the second mixing coordinates for printing with the imaging apparatus.
Abstract:
Various embodiments relate to systems and/or methods for sample preparation that can be used for biochemical and/or molecular biology procedures involving small volumes, for example, micro volumes or smaller. Methods and systems that can reduce sample size requirements and increase the number of samples on a substrate are provided. Samples can be applied to a plate or other appropriate substrate and can be used for, inter alia, sequencing reactions. In some embodiments, apparatuses, systems, and/or methods for charged analyte collection are provided. Charged analytes in a sample can be electrokinetically collected or extracted from a conduit through a hole formed in a sidewall of the conduit, by application of an electric field that causes the charged analytes to migrate in a direction that is transverse to the conduit.
Abstract:
Embodiments of methods and devices are disclosed for the manipulation (e.g., concentration, purification, capture, trapping, location, transfer) of analytes, e.g., biomolecules, with respect to analyte-containing solutions, using one or more electric fields.
Abstract:
A method for correcting neutral color shift in a production cartridge for use in an imaging system includes determining a colorant increment data based on a standard cartridge neutral variation signature color data and a standard cartridge neutral sensitivity signature color data associated with a standard cartridge, and based on a production cartridge neutral variation signature color data and a production cartridge neutral sensitivity signature color data associated with the production cartridge, and using the colorant increment data to correct the neutral color shift.