Abstract:
An X-ray analysis apparatus converts an X-ray intensity distribution of discrete data determined for each pixel, from a first plane where the distribution is known into a second plane where the distribution is not known. The X-ray analysis apparatus projects onto the second plane, a grid point which specifies a pixel on the first plane and an intermediate point between the grid points, as nodes, calculates an area of a region where a polygon expressing a projected pixel specified by the projected nodes overlaps with each pixel on the second plane, to thereby calculate an occupancy ratio of the polygon expressing the projected pixel to each pixel on the second plane and distributes X-ray intensity in the pixel on the first plane to the pixel on the second plane based on the occupancy ratio, to thereby convert the X-ray intensity distribution.
Abstract:
Provided is an X-ray small angle optical system, which easily achieves a desired angular resolution, including: an X-ray source having a microfocus; a multilayer mirror having an elliptical reflection surface, and being configured to collect X-rays emitted from the X-ray source and to irradiate a sample; and an X-ray detector configured to detect scattered X-rays generated from the sample, in which the elliptical reflection surface of the multilayer mirror has a focal point A and a focal point B, in which the X-ray source is arranged such that the microfocus includes the focal point A, and in which the X-ray detector is arranged on the multilayer mirror side of the focal point B.
Abstract:
Provided is a scattering measurement analysis method including obtaining a theoretical scattering intensity from a structural model that contains a lot of scatterers, wherein the obtaining of a theoretical scattering intensity includes obtaining a contribution to the theoretical scattering intensity of a pair of a scatterer “m” and a scatterer “n” existing at a distance “r” from the scatterer “m” among a plurality of scatterers by at least one of calculations in accordance with the distance “r”, the calculations including a first calculation of calculating contributions of the scatterer “m” and the scatterer “n” from respective scattering factors fm(q) and fn*(q) and a center-to-center distance rmn between the scatterer “m” and the scatterer “n”, and a second calculation of substituting the scattering factor fn*(q) of the scatterer “n” by a first representative value and substituting a probability density function of the number of scatterers existing at the distance “r” by a constant value.
Abstract:
A processing apparatus for processing a structure factor including total scattering data and data of a structural model are provided comprises a structure factor acquiring section for acquiring a first structure factor based on measured total scattering data; a data converting section for separating the first structure factor into a short-range correlation and a long-range correlation; and a scattering intensity calculating section for acquiring a structural model indicating an atomic arrangement in a finite region, calculating a short-range scattering intensity of the structural model and calculating a second structure factor from the short-range scattering intensity and the long-range correlation.