Abstract:
The disclosure describes a recombinant immunoglobulin heavy chain comprising a sortase conjugation loop, methods for conjugating and/or labeling such recombinant immunoglobulin heavy chains by use of the enzyme sortase and to the conjugates/labeled products obtained via the method.
Abstract:
The present disclosure is directed to the use of certain glycosyltransferase variants having N-terminal truncation deletions. It was found that the combination of two different truncation variants of human β-galactoside-α-2,6-sialyltransferase I (hST6Gal-I) exhibited different specific sialyltransferase enzymatic activities. In one example, under conditions wherein the first variant Δ89 hST6Gal-I catalyzed formation of bi-sialylated target molecules the second variant Δ108 hST6Gal-I catalyzed formation of mono-sialylated target molecules. Thus, disclosed are variants of mammalian glycosyltransferase, nucleic acids encoding the same, methods and means for recombinantly producing the variants of mammalian glycosyltransferase and use thereof, particularly for sialylating in a quantitatively controlled manner terminal acceptor groups of glycan moieties being part of glycoproteins such as immunoglobulins.
Abstract:
The present disclosure is directed to the use of certain glycosyltransferase variants having N-terminal truncation deletions. Contrary to previous findings certain truncations were found to exhibit sialidase enzymatic activity, particularly a variant of human sialyltransferase (hST6Gal-I) with a truncation deletion involving the first 89 N-terminal amino acids of the respective wild-type polypeptide. A fundamental finding documented in the present disclosure is that there exists a variant of this enzyme which is capable of catalyzing transfer of a glycosyl moiety as well as hydrolysis thereof. Thus, disclosed is a specific exemplary variant of mammalian glycosyltransferase, nucleic acids encoding the same, methods and means for recombinantly producing the variant of mammalian glycosyltransferase and use thereof, particularly for sialylating in a quantitatively controlled manner terminal acceptor groups of glycan moieties being part of glycoproteins such as immunoglobulins.
Abstract:
The present invention relates to a method of determining an analyte in a sample, said method comprising (a) contacting said sample with (i) a binding compound binding to said analyte, said binding compound comprising a binding agent and a first partner of an affinity pair (first affinity partner); and (ii) a second partner of the affinity pair (second affinity partner) coupled to a solid surface, to an indicator, and/or to a second binding agent; and (b) determining said analyte based on complexes formed in step (a); wherein one of said first affinity partner and said second affinity partner is a polypeptide comprising the amino acid sequence of SEQ ID NO:1 or a sequence at least 50% identical thereto, and wherein the other of said first affinity partner and said second affinity partner is a polypeptide comprising the amino acid sequence of SEQ ID NO:2 or a sequence at least 50% identical thereto. The present invention also relates to a polypeptide comprising an amino acid sequence as specified in SEQ ID NO:1 or a sequence at least 50% identical thereto, wherein the amino acid at the position corresponding to position 77 in SEQ ID NO:1 is not a histidine; and to a polypeptide comprising an amino acid sequence as specified in SEQ ID NO:2 or a sequence at least 50% identical thereto, wherein (i) the amino acid at the position corresponding to position 17 in SEQ ID NO:2 is not a cysteine, in an embodiment is alanine, serine, leucine, isoleucine, or glycine and/or (ii) said polypeptide further comprises at least one functional peptide; and to fusion polypeptides, polypeptide complexes, polynucleotides and kit related to the aforesaid.
Abstract:
The present invention relates to a method for assessing atrial fibrillation in a subject, said method comprising the steps of determining the amount of BMP10 in a sample from the subject, and comparing the amount of BMP10 to a reference amount, whereby atrial fibrillation is to be assessed. Moreover, the present invention relates to a method for diagnosing heart failure based on the determination of BMP 10 in a sample from a subject. Further, the present invention relates to a method for predicting the risk of a subject of hospitalization due to heart failure based on the determination of a BMP10-type peptide in a sample from a subject. The present invention further pertains to antibodies which bind to one or more BMP10-type peptides such as NT-proBMP10.
Abstract:
The disclosure describes a recombinant immunoglobulin heavy chain comprising a sortase conjugation loop, methods for conjugating and/or labeling such recombinant immunoglobulin heavy chains by use of the enzyme sortase and to the conjugates/labeled products obtained via the method.
Abstract:
The present invention relates to a novel monoclonal antibody that specifically binds to a conformation dependent epitope on human thymidine kinase 1 (hTK-1; SEQ ID NO:1), to methods for quantifying hTK-1 employing the antibody and to the use of the anti-hTK-1 antibody in quantifying hTK-1.
Abstract:
The present disclosure is directed to the use of certain glycosyltransferase variants having N-terminal truncation deletions. Contrary to previous findings certain truncations were found to exhibit sialidase enzymatic activity, particularly a variant of human sialyltransferase (hST6Gal-I) with a truncation deletion involving the first 89 N-terminal amino acids of the respective wild-type polypeptide. A fundamental finding documented in the present disclosure is that there exists a variant of this enzyme which is capable of catalyzing transfer of a glycosyl moiety as well as hydrolysis thereof. Thus, disclosed is a specific exemplary variant of mammalian glycosyltransferase, nucleic acids encoding the same, methods and means for recombinantly producing the variant of mammalian glycosyltransferase and use thereof, particularly for sialylating in a quantitatively controlled manner terminal acceptor groups of glycan moieties being part of glycoproteins such as immunoglobulins.
Abstract:
The present disclosure is directed to the use of certain glycosyltransferase variants having N-terminal truncation deletions. It was found that the combination of two different truncation variants of human β-galactoside-α-2,6-sialyltransferase I (hST6Gal-I) exhibited different specific sialyltransferase enzymatic activities. In one example, under conditions wherein the first variant Δ89 hST6Gal-I catalyzed formation of bi-sialylated target molecules the second variant Δ108 hST6Gal-I catalyzed formation of mono-sialylated target molecules. Thus, disclosed are variants of mammalian glycosyltransferase, nucleic acids encoding the same, methods and means for recombinantly producing the variants of mammalian glycosyltransferase and use thereof, particularly for sialylating in a quantitatively controlled manner terminal acceptor groups of glycan moieties being part of glycoproteins such as immunoglobulins.
Abstract:
The present invention relates to an assay for specific detection of complement factor H-related protein 1 (CFHR1) in a sample from a subject, as well as kits and agents related thereto.