Abstract:
In a method for producing composite particles containing polymer particles and silica particles that adhere to the polymer particles, the composite particles are obtained by subjecting a polymerizable monomer to aqueous suspension polymerization in a presence of silica particles and a cellulose compound adsorbing onto the silica particles. The composite particles contain the polymer particles, the silica particles that adhere to surfaces of the polymer particles, and the water-soluble cellulose compound.
Abstract:
In a method for producing composite particles containing polymer particles and silica particles that adhere to the polymer particles, the composite particles are obtained by subjecting a polymerizable monomer to aqueous suspension polymerization in a presence of silica particles and a cellulose compound adsorbing onto the silica particles. The composite particles contain the polymer particles, the silica particles that adhere to surfaces of the polymer particles, and the water-soluble cellulose compound.
Abstract:
Provided is a windmill blade, comprising a core material formed of an acrylic resin expanded article and an outer skin covering the core material, in winch the outer skin is formed of a fiber-reinforced resin material including a carbon fiber and a resin, and the acrylic resin expanded article has a specified bending modulus.
Abstract:
The present invention provides porous resin particles made of a polymer of a monomer mixture, wherein the monomer mixture contains, as monomers, at least methyl methacrylate and a (meth)acrylic-based cross-linkable monomer, a content of the methyl methacrylate in the monomer mixture is 1 to 50% by weight, a content of the (meth)acrylic-based cross-linkable monomer in the monomer mixture is 50 to 99% by weight, the porous resin particles have a specific surface area of 130 to 180 m2/g, a pore volume of 0.3 to 0.7 ml/g, and an average pore size of 13 to 16 nm, an amount of unreacted methyl methacrylate remaining in the porous resin particles is 20 ppm or less, and the porous resin particles have a thermal decomposition starting temperature of 260° C. or more.