Abstract:
A process to prepare a first middle distillates fraction, a second middle distillates fraction, a distillate base oil and a residual base oil by providing a Fischer-Tropsch product stream; separating the Fischer-Tropsch product stream to obtain at least a low boiling fraction, boiling below a temperature ranging from 300 to 450° C., and a high boiling fraction, boiling above a temperature ranging from 300 to 450° C.; subjecting the high boiling fraction to a hydrocracking/hydroisomerization step to obtain a partially isomerised product stream; separating the partially isomerised product stream to obtain a first middle distillates fraction, a heavy distillates fraction and a residual fraction, the residual fraction having a T5 wt. % boiling point between 400 and 650° C.; dewaxing the low boiling fraction to obtain a second middle distillates fraction; dewaxing the heavy distillates fraction to obtain a distillate base oil; and dewaxing the residual fraction to obtain a residual base oil.
Abstract:
The present invention relates to a process for preparing a residual base oil from a hydrocarbon feed which is derived from a Fischer-Tropsch process, the process comprises the steps of: (a) providing a hydrocarbon feed which is derived from a Fischer-Tropsch process; (b) subjecting the hydrocarbon feed of step (a) to a hydrocracking/hydroisomerisation step to obtain an at least partially isomerised product; (c) separating at least part of the at least partially isomerised product as obtained in step (b) into one or more lower boiling fractions and a hydrowax residue fraction; (d) catalytic dewaxing of the hydrowax residue fraction of step (c) to obtain a highly isomerised product; (e) separating the highly isomerised product of step (d) into one or more light fractions and a isomerised residual fraction; (f) mixing of the isomerised residual fraction of step (e) with a diluent to obtain a diluted isomerised residual fraction; (g) cooling the diluted isomerised residual fraction of step (f) to a temperature between 0° C. and −60° C.; (i) subjecting the mixture of step (g) to a centrifuging step at a temperature between 0° C. and −60° C. to isolate the wax from the diluted isomerised residual fraction; (j) separating the diluent from the diluted isomerised residual fraction to obtain a residual base oil.
Abstract:
The present invention provides a process to prepare a gas oil fraction, a heavy distillate fraction and a residual base oil fraction, which process at least comprises the following steps: (a) subjecting the feedstock to a hydroprocessing step to obtain an at least partially isomerised feedstock; (b) separating the isomerised feedstock by means of distillation into at least a gas oil fraction, a heavy distillate fraction and a residual fraction, wherein the residual fraction has a T10 wt % boiling point of between 200 and 450° C.; (c) recycling part of the residual fraction to step (a); and (d) catalytic dewaxing of remaining residual fraction to obtain a residual base oil.
Abstract:
The present invention relates to a method for reducing the cloud point of a Fischer-Tropsch derived fraction to below 0° C., wherein the method comprises subjecting the Fischer-Tropsch derived fraction to a cloud point reduction step comprising mixing the Fischer-Tropsch derived fraction, which comprises more than 80 wt. % of paraffins and 90 wt. % of saturates, with a solvent mixture (16), wherein the solvent mixture (16) comprises a paraffinic naphtha fraction (7) and a co-solvent (15); and subjecting the solvent treatment mixture (23) to a solvent de-waxing step (17).
Abstract:
The disclosure relates to the conversion of a paraffinic feedstock that comprises at least 50 wt % of compounds boiling above 370° c. and which has a paraffin content of at least 60 wt %, an aromatics content of below 1 wt %, a naphthenic content below 2 wt %, a nitrogen content of below 0.1 wt % The process includes: a) subjecting the paraffinic feedstock to a hydroprocessing step to obtain an at least partially isomerized feedstock; and b) separating the at least partially isomerized feedstock into one or more middle distillate fractions and a first residual fraction. Step (a) is carried out by contacting the paraffinic feedstock with a first catalyst having hydrocracking and hydroisomerizing activity and then with a second catalyst having hydrocracking and hydroisomerizing activity. The second catalyst is more active in hydroisomerization and less active in hydrocracking than the first catalyst.
Abstract:
A process to prepare a first middle distillates fraction, a second middle distillates fraction and one or more base oils, the process comprising the steps of providing a Fischer-Tropsch product stream; separating the Fischer-Tropsch product stream to obtain at least a low boiling fraction, boiling below a temperature in the range of from 300 to 450° C., and a high boiling fraction, boiling above a temperature in the range of from 300 to 450° C.; subjecting the high boiling fraction to a hydrocracking/hydroisomerization step to obtain an at least partially isomerised product stream; separating the partially isomerised product stream to obtain a first middle distillates fraction and a residual fraction, wherein the residual fraction has a T10 wt. % boiling point of between 200 and 450° C.; dewaxing the low boiling fraction to obtain a second middle distillates fraction; and dewaxing the residual fraction to obtain one or more base oils.